• 二叉搜索树01--[简介&&接口设计&&比较器&&打印器]


    1.何为二叉搜索树

     

    1.1二叉搜索树的接口设计

    我们节点在哪一层和添加的顺序无关所以 BST不需要索引

     

    1.2添加节点

     

    1.3元素比较方案

    通过创建比较器接口实现自定义比较规则 即使是相同对象

    相关代码

     1.4可视化网站推荐

    http://520it.com/binarytrees/

    http://btv.melezinek.cz/binary-search-tree.html

    https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

    https://yangez.github.io/btree-js/

    https://www.codelike.in/

     1.5打印二叉树

    使用注意事项

    效果图

     

    打印器代码

    file包

    package com.mj.file;
    
    import java.io.BufferedWriter;
    import java.io.File;
    import java.io.FileWriter;
    
    public class Files {
        
        public static void writeToFile(String filePath, Object data) {
            writeToFile(filePath, data, false);
        }
        
        public static void writeToFile(String filePath, Object data, boolean append) {
            if (filePath == null || data == null) return;
            
            try {
                File file = new File(filePath);
                if (!file.exists()) {
                    file.getParentFile().mkdirs();
                    file.createNewFile();
                }
                
                try (FileWriter writer = new FileWriter(file, append);
                        BufferedWriter out = new BufferedWriter(writer) ) {
                    out.write(data.toString());
                    out.flush();
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        
    }
    View Code

    1.6相关代码

    1.BinarySearchTree类

    package com.mj;
    
    import java.util.Comparator;
    import java.util.LinkedList;
    import java.util.Queue;
    
    import com.mj.printer.BinaryTreeInfo;
    
    @SuppressWarnings("unchecked")
    public class BinarySearchTree<E> implements BinaryTreeInfo {
        private int size;
        private Node<E> root;
        private Comparator<E> comparator;
        
        public BinarySearchTree() {
            this(null);
        }
        
        public BinarySearchTree(Comparator<E> comparator) {
            this.comparator = comparator;
        }
        
        public int size() {
            return size;
        }
    
        public boolean isEmpty() {
            return size == 0;
        }
    
        public void clear() {
            root = null;
            size = 0;
        }
    
        public void add(E element) {
            elementNotNullCheck(element);
            
            // 添加第一个节点
            if (root == null) {
                root = new Node<>(element, null);
                size++;
                return;
            }
            
            // 添加的不是第一个节点
            // 找到父节点
            Node<E> parent = root;
            Node<E> node = root;
            int cmp = 0;
            do {
                cmp = compare(element, node.element);
                parent = node;
                if (cmp > 0) {
                    node = node.right;
                } else if (cmp < 0) {
                    node = node.left;
                } else { // 相等
                    node.element = element;
                    return;
                }
            } while (node != null);
    
            // 看看插入到父节点的哪个位置
            Node<E> newNode = new Node<>(element, parent);
            if (cmp > 0) {
                parent.right = newNode;
            } else {
                parent.left = newNode;
            }
            size++;
        }
    
        public void remove(E element) {
            remove(node(element));
        }
    
        public boolean contains(E element) {
            return node(element) != null;
        }
        
        private void remove(Node<E> node) {
            if (node == null) return;
            
            size--;
            
            if (node.hasTwoChildren()) { // 度为2的节点
                // 找到后继节点
                Node<E> s = successor(node);
                // 用后继节点的值覆盖度为2的节点的值
                node.element = s.element;
                // 删除后继节点
                node = s;
            }
            
            // 删除node节点(node的度必然是1或者0)
            Node<E> replacement = node.left != null ? node.left : node.right;
            
            if (replacement != null) { // node是度为1的节点
                // 更改parent
                replacement.parent = node.parent;
                // 更改parent的left、right的指向
                if (node.parent == null) { // node是度为1的节点并且是根节点
                    root = replacement;
                } else if (node == node.parent.left) {
                    node.parent.left = replacement;
                } else { // node == node.parent.right
                    node.parent.right = replacement;
                }
            } else if (node.parent == null) { // node是叶子节点并且是根节点
                root = null;
            } else { // node是叶子节点,但不是根节点
                if (node == node.parent.left) {
                    node.parent.left = null;
                } else { // node == node.parent.right
                    node.parent.right = null;
                }
            }
        }
        
        private Node<E> node(E element) {
            Node<E> node = root;
            while (node != null) {
                int cmp = compare(element, node.element);
                if (cmp == 0) return node;
                if (cmp > 0) {
                    node = node.right;
                } else { // cmp < 0
                    node = node.left;
                }
            }
            return null;
        }
        
    //    /**
    //     * 前序遍历
    //     */
    //    public void preorderTraversal() {
    //        preorderTraversal(root);
    //    }
    //    
    //    private void preorderTraversal(Node<E> node) {
    //        if (node == null) return;
    //        
    //        System.out.println(node.element);
    //        preorderTraversal(node.left);
    //        preorderTraversal(node.right);
    //    }
    //    
    //    /**
    //     * 中序遍历
    //     */
    //    public void inorderTraversal() {
    //        inorderTraversal(root);
    //    }
    //    
    //    private void inorderTraversal(Node<E> node) {
    //        if (node == null) return;
    //        
    //        inorderTraversal(node.left);
    //        System.out.println(node.element);
    //        inorderTraversal(node.right);
    //    }
    //    
    //    /**
    //     * 后序遍历
    //     */
    //    public void postorderTraversal() {
    //        postorderTraversal(root);
    //    }
    //    
    //    private void postorderTraversal(Node<E> node) {
    //        if (node == null) return;
    //
    //        postorderTraversal(node.left);
    //        postorderTraversal(node.right);
    //        System.out.println(node.element);
    //    }
    //    
    //    /**
    //     * 层序遍历
    //     */
    //    public void levelOrderTraversal() {
    //        if (root == null) return;
    //        
    //        Queue<Node<E>> queue = new LinkedList<>();
    //        queue.offer(root);
    //        
    //        while (!queue.isEmpty()) {
    //            Node<E> node = queue.poll();
    //            System.out.println(node.element);
    //            
    //            if (node.left != null) {
    //                queue.offer(node.left);
    //            }
    //            
    //            if (node.right != null) {
    //                queue.offer(node.right);
    //            }
    //        }
    //    }
        
        public void preorder(Visitor<E> visitor) {
            if (visitor == null) return;
            preorder(root, visitor);
        }
        
        private void preorder(Node<E> node, Visitor<E> visitor) {
            if (node == null || visitor.stop) return;
            
            visitor.stop = visitor.visit(node.element);
            preorder(node.left, visitor);
            preorder(node.right, visitor);
        }
        
        public void inorder(Visitor<E> visitor) {
            if (visitor == null) return;
            inorder(root, visitor);
        }
        
        private void inorder(Node<E> node, Visitor<E> visitor) {
            if (node == null || visitor.stop) return;
            
            inorder(node.left, visitor);
            if (visitor.stop) return;
            visitor.stop = visitor.visit(node.element);
            inorder(node.right, visitor);
        }
        
        public void postorder(Visitor<E> visitor) {
            if (visitor == null) return;
            postorder(root, visitor);
        }
        
        private void postorder(Node<E> node, Visitor<E> visitor) {
            if (node == null || visitor.stop) return;
            
            postorder(node.left, visitor);
            postorder(node.right, visitor);
            if (visitor.stop) return;
            visitor.stop = visitor.visit(node.element);
        }
        
        public void levelOrder(Visitor<E> visitor) {
            if (root == null || visitor == null) return;
            
            Queue<Node<E>> queue = new LinkedList<>();
            queue.offer(root);
            
            while (!queue.isEmpty()) {
                Node<E> node = queue.poll();
                if (visitor.visit(node.element)) return;
                
                if (node.left != null) {
                    queue.offer(node.left);
                }
                
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
        }
        
        public boolean isComplete() {
            if (root == null) return false;
            
            Queue<Node<E>> queue = new LinkedList<>();
            queue.offer(root);
    
            boolean leaf = false;
            while (!queue.isEmpty()) {
                Node<E> node = queue.poll();
                if (leaf && !node.isLeaf()) return false;
                
                if (node.left != null) {
                    queue.offer(node.left);
                } else if (node.right != null) { // node.left == null && node.right != null
                    return false;
                }
                
                if (node.right != null) {
                    queue.offer(node.right);
                } else { // node.right == null
                    leaf = true;
                }
            }
            
            return true;
        }
        
    //    public boolean isComplete() {
    //        if (root == null) return false;
    //        
    //        Queue<Node<E>> queue = new LinkedList<>();
    //        queue.offer(root);
    //        
    //        boolean leaf = false;
    //        while (!queue.isEmpty()) {
    //            Node<E> node = queue.poll();
    //            if (leaf && !node.isLeaf()) return false;
    //
    //            if (node.left != null && node.right != null) {
    //                queue.offer(node.left);
    //                queue.offer(node.right);
    //            } else if (node.left == null && node.right != null) {
    //                return false;
    //            } else { // 后面遍历的节点都必须是叶子节点
    //                leaf = true;
    //                if (node.left != null) {
    //                    queue.offer(node.left);
    //                }
    //            }
    //        }
    //        
    //        return true;
    //    }
        
        public int height() {
            if (root == null) return 0;
            
            // 树的高度
            int height = 0;
            // 存储着每一层的元素数量
            int levelSize = 1;
            Queue<Node<E>> queue = new LinkedList<>();
            queue.offer(root);
            
            while (!queue.isEmpty()) {
                Node<E> node = queue.poll();
                levelSize--;
                
                if (node.left != null) {
                    queue.offer(node.left);
                }
                
                if (node.right != null) {
                    queue.offer(node.right);
                }
    
                if (levelSize == 0) { // 意味着即将要访问下一层
                    levelSize = queue.size();
                    height++;
                }
            }
            
            return height;
        }
        
        public int height2() {
            return height(root);
        }
        
        private int height(Node<E> node) {
            if (node == null) return 0;
            return 1 + Math.max(height(node.left), height(node.right));
        }
        
        @Override
        public String toString() {
            StringBuilder sb = new StringBuilder();
            toString(root, sb, "");
            return sb.toString();
        }
        
        private void toString(Node<E> node, StringBuilder sb, String prefix) {
            if (node == null) return;
    
            toString(node.left, sb, prefix + "L---");
            sb.append(prefix).append(node.element).append("
    ");
            toString(node.right, sb, prefix + "R---");
        }
        
        /**
         * @return 返回值等于0,代表e1和e2相等;返回值大于0,代表e1大于e2;返回值小于于0,代表e1小于e2
         */
        private int compare(E e1, E e2) {
            if (comparator != null) {
                return comparator.compare(e1, e2);
            }
            return ((Comparable<E>)e1).compareTo(e2);
        }
        
        private void elementNotNullCheck(E element) {
            if (element == null) {
                throw new IllegalArgumentException("element must not be null");
            }
        }
        
        @SuppressWarnings("unused")
        private Node<E> predecessor(Node<E> node) {
            if (node == null) return null;
            
            // 前驱节点在左子树当中(left.right.right.right....)
            Node<E> p = node.left;
            if (p != null) {
                while (p.right != null) {
                    p = p.right;
                }
                return p;
            }
            
            // 从父节点、祖父节点中寻找前驱节点
            while (node.parent != null && node == node.parent.left) {
                node = node.parent;
            }
    
            // node.parent == null
            // node == node.parent.right
            return node.parent;
        }
        
        private Node<E> successor(Node<E> node) {
            if (node == null) return null;
            
            // 前驱节点在左子树当中(right.left.left.left....)
            Node<E> p = node.right;
            if (p != null) {
                while (p.left != null) {
                    p = p.left;
                }
                return p;
            }
            
            // 从父节点、祖父节点中寻找前驱节点
            while (node.parent != null && node == node.parent.right) {
                node = node.parent;
            }
    
            return node.parent;
        }
        
        public static abstract class Visitor<E> {
            boolean stop;
            /**
             * @return 如果返回true,就代表停止遍历
             */
            public abstract boolean visit(E element);
        }
    
        private static class Node<E> {
            E element;
            Node<E> left;
            Node<E> right;
            Node<E> parent;
            public Node(E element, Node<E> parent) {
                this.element = element;
                this.parent = parent;
            }
            
            public boolean isLeaf() {
                return left == null && right == null;
            }
            
            public boolean hasTwoChildren() {
                return left != null && right != null;
            }
        }
    
        @Override
        public Object root() {
            return root;
        }
    
        @Override
        public Object left(Object node) {
            return ((Node<E>)node).left;
        }
    
        @Override
        public Object right(Object node) {
            return ((Node<E>)node).right;
        }
    
        @Override
        public Object string(Object node) {
            Node<E> myNode = (Node<E>)node;
            String parentString = "null";
            if (myNode.parent != null) {
                parentString = myNode.parent.element.toString();
            }
            return myNode.element + "_p(" + parentString + ")";
        }
    }
    View Code

    2.main函数

    package com.mj;
    
    import java.util.Comparator;
    
    import com.mj.BinarySearchTree.Visitor;
    import com.mj.file.Files;
    import com.mj.printer.BinaryTreeInfo;
    import com.mj.printer.BinaryTrees;
    
    @SuppressWarnings("unused")
    public class Main {
        
        private static class PersonComparator implements Comparator<Person> {
            public int compare(Person e1, Person e2) {
                return e1.getAge() - e2.getAge();
            }
        }
        
        private static class PersonComparator2 implements Comparator<Person> {
            public int compare(Person e1, Person e2) {
                return e2.getAge() - e1.getAge();
            }
        }
    
        static void test1() {
            Integer data[] = new Integer[] {
                    7, 4, 9, 2, 5, 8, 11, 3, 12, 1
            };
            
            BinarySearchTree<Integer> bst = new BinarySearchTree<>();
            for (int i = 0; i < data.length; i++) {
                bst.add(data[i]);
            }
            
            BinaryTrees.println(bst);
        }
        
        static void test2() {
            Integer data[] = new Integer[] {
                    7, 4, 9, 2, 5, 8, 11, 3, 12, 1
            };
            
            BinarySearchTree<Person> bst1 = new BinarySearchTree<>();
            for (int i = 0; i < data.length; i++) {
                bst1.add(new Person(data[i]));
            }
            
            BinaryTrees.println(bst1);
            
            BinarySearchTree<Person> bst2 = new BinarySearchTree<>(new Comparator<Person>() {
                public int compare(Person o1, Person o2) {
                    return o2.getAge() - o1.getAge();
                }
            });
            for (int i = 0; i < data.length; i++) {
                bst2.add(new Person(data[i]));
            }
            BinaryTrees.println(bst2);
        }
        
        static void test3() {
            BinarySearchTree<Integer> bst = new BinarySearchTree<>();
            for (int i = 0; i < 40; i++) {
                bst.add((int)(Math.random() * 100));
            }
            
            String str = BinaryTrees.printString(bst);
            str += "
    ";
            Files.writeToFile("F:/1.txt", str, true);
            
            // BinaryTrees.println(bst);
        }
        
        static void test4() {
            BinaryTrees.println(new BinaryTreeInfo() {
                
                @Override
                public Object string(Object node) {
                    return node.toString() + "_";
                }
                
                @Override
                public Object root() {
                    return "A";
                }
                
                @Override
                public Object right(Object node) {
                    if (node.equals("A")) return "C";
                    if (node.equals("C")) return "E";
                    return null;
                }
                
                @Override
                public Object left(Object node) {
                    if (node.equals("A")) return "B";
                    if (node.equals("C")) return "D";
                    return null;
                }
            });
            
            // test3();
            
            
            /*
             * Java的匿名类,类似于iOS中的Block、JS中的闭包(function)
             */
            
    //        BinarySearchTree<Person> bst1 = new BinarySearchTree<>(new Comparator<Person>() {
    //            @Override
    //            public int compare(Person o1, Person o2) {
    //                return 0;
    //            }
    //        });
    //        bst1.add(new Person(12));
    //        bst1.add(new Person(15));
    //        
    //        BinarySearchTree<Person> bst2 = new BinarySearchTree<>(new PersonComparator());
    //        bst2.add(new Person(12));
    //        bst2.add(new Person(15));
    //
            
            
    //        BinarySearchTree<Car> bst4 = new BinarySearchTree<>(new Car);
    //        
    //        
    //        java.util.Comparator<Integer> iComparator;
        }
        
        static void test5() {
            BinarySearchTree<Person> bst = new BinarySearchTree<>();
            bst.add(new Person(10, "jack"));
            bst.add(new Person(12, "rose"));
            bst.add(new Person(6, "jim"));
            
            bst.add(new Person(10, "michael"));
            
            BinaryTrees.println(bst);
        }
        
        static void test6() {
            Integer data[] = new Integer[] {
                    7, 4, 9, 2, 5
            };
            
            BinarySearchTree<Integer> bst = new BinarySearchTree<>();
            for (int i = 0; i < data.length; i++) {
                bst.add(data[i]);
            }
            
    //        BinarySearchTree<Integer> bst = new BinarySearchTree<>();
    //        for (int i = 0; i < 10; i++) {
    //            bst.add((int)(Math.random() * 100));
    //        }
            BinaryTrees.println(bst);
            System.out.println(bst.isComplete());
            
            // bst.levelOrderTraversal();
            
            /*
             *       7
             *    4    9
                2   5
             */
            
    //        bst.levelOrder(new Visitor<Integer>() {
    //            public void visit(Integer element) {
    //                System.out.print("_" + element + "_ ");
    //            }
    //        });
            
    //        bst.inorder(new Visitor<Integer>() {
    //            public void visit(Integer element) {
    //                System.out.print("_" + (element + 3) + "_ ");
    //            }
    //        });
            
            // System.out.println(bst.height());
        }
        
        static void test7() {
            Integer data[] = new Integer[] {
                    7, 4, 9, 2, 5, 8, 11, 3, 12, 1
            };
            
            BinarySearchTree<Integer> bst = new BinarySearchTree<>();
            for (int i = 0; i < data.length; i++) {
                bst.add(data[i]);
            }
            
            BinaryTrees.println(bst);
            
            bst.remove(7);
            
            BinaryTrees.println(bst);
        }
        
        static void test8() {
            Integer data[] = new Integer[] {
                    7, 4, 9, 2, 1
            };
            
            BinarySearchTree<Integer> bst = new BinarySearchTree<>();
            for (int i = 0; i < data.length; i++) {
                bst.add(data[i]);
            }
            BinaryTrees.println(bst);
            System.out.println(bst.isComplete());
        }
        
        static void test9() {
            Integer data[] = new Integer[] {
                    7, 4, 9, 2, 1
            };
            
            BinarySearchTree<Integer> bst = new BinarySearchTree<>();
            for (int i = 0; i < data.length; i++) {
                bst.add(data[i]);
            }
            BinaryTrees.println(bst);
            
            bst.preorder(new Visitor<Integer>() {
                public boolean visit(Integer element) {
                    System.out.print(element + " ");
                    return element == 2 ? true : false;
                }
            });
            System.out.println();
            
            bst.inorder(new Visitor<Integer>() {
                public boolean visit(Integer element) {
                    System.out.print(element + " ");
                    return element == 4 ? true : false;
                }
            });
            System.out.println();
            
            bst.postorder(new Visitor<Integer>() {
                public boolean visit(Integer element) {
                    System.out.print(element + " ");
                    return element == 4 ? true : false;
                }
            });
            System.out.println();
            
            bst.levelOrder(new Visitor<Integer>() {
                public boolean visit(Integer element) {
                    System.out.print(element + " ");
                    return element == 9 ? true : false;
                }
            });
            System.out.println();
        }
        
        public static void main(String[] args) {
            test9();
        }
    }
    View Code

    3.Person类

    package com.mj;
    
    public class Person implements Comparable<Person> {
        private int age;
        private String name;
        
        public int getAge() {
            return age;
        }
    
        public void setAge(int age) {
            this.age = age;
        }
    
        public Person(int age) {
            this.age = age;
        }
    
        public Person(int age, String name) {
            this.age = age;
            this.name = name;
        }
    
        @Override
        public int compareTo(Person e) {
    //        if (age > e.age) return 1;
    //        if (age < e.age) return -1;
    //        return 0;
            return age - e.age;
        }
        
        @Override
        public String toString() {
            return age + "_" + name;
        }
        
    }
    View Code

  • 相关阅读:
    newgrp
    netstat
    netlink, PF_NETLINK
    netdevice
    mv
    mplayer
    mpg123
    MOVE
    motd
    more
  • 原文地址:https://www.cnblogs.com/ggnbnb/p/12287092.html
Copyright © 2020-2023  润新知