题意:判断是否存在内核。
半平面交存板子。
/* gyt Live up to every day */ #include<cstdio> #include<cmath> #include<iostream> #include<algorithm> #include<vector> #include<stack> #include<cstring>` #include<queue> #include<set> #include<string> #include<map> #include <time.h> #define PI acos(-1) using namespace std; typedef long long ll; typedef double db; const int maxn = 1e4+100; const ll maxm = 1e7; const ll mod = 1e9 + 7; const int INF = 0x3f3f3f; const int inf =0x3f3f3f; const db eps = 1e-9; const int kind=26; struct point { double x,y; point(double x=0,double y=0): x(x),y(y){} }an[maxn], bn[maxn], cn[maxn]; typedef point Vector; Vector operator +(point a,point b) { return Vector(a.x+b.x,a.y+b.y); } Vector operator *(point a,double b) { return Vector(a.x*b,a.y*b); } Vector operator -(point a,point b) { return Vector(a.x-b.x,a.y-b.y); } double dot(Vector a,Vector b) { //内积 return a.x*b.x+a.y*b.y; } double cross(Vector a,Vector b) { //外积 return a.x*b.y-a.y*b.x; } int n, m; db A, B, C; //获取Ax+By+c=0 void getline(point a, point b) { A=b.y-a.y; B=a.x-b.x; C=b.x*a.y-a.x*b.y; } //getline()得到的直线与点a,b构成直线的交点 point intersect(point a, point b) { db u=fabs(A*a.x+B*a.y+C); db v=fabs(A*b.x+B*b.y+C); point ans; ans.x=(a.x*v+b.x*u)/(u+v); ans.y=(a.y*v+b.y*u)/(u+v); return ans; } void cut() { int cnt=0; for (int i=1; i<=m; i++) { if (A*cn[i].x+B*cn[i].y+C>=0) bn[++cnt]=cn[i]; else { if (A*cn[i-1].x+B*cn[i-1].y+C>0) { bn[++cnt]=intersect(cn[i-1], cn[i]); } if (A*cn[i+1].x+B*cn[i+1].y+C>0) { bn[++cnt]=intersect(cn[i+1], cn[i]); } } } for (int i=1; i<=cnt; i++) { cn[i]=bn[i]; } cn[0]=bn[cnt]; cn[cnt+1]=bn[1]; m=cnt; } void deal() { for (int i=1; i<=n; i++) { cn[i]=an[i]; } an[n+1]=an[1]; cn[n+1]=an[1]; cn[0]=an[n]; m=n; for (int i=1; i<=n; i++) { getline(an[i], an[i+1]); cut(); } } void solve() { while(scanf("%d", &n)!=EOF && n) { for (int i=1; i<=n; i++) { scanf("%lf%lf", &an[i].x, &an[i].y); } reverse(an+1, an+1+n); deal(); if (m) puts("1"); else puts("0"); } } int main() { int t = 1; //freopen("in.txt", "r", stdin); // scanf("%d", &t); while(t--) solve(); return 0; }