• Matlab 中S-函数的使用 sfuntmpl


    function [sys,x0,str,ts,simStateCompliance] = sfuntmpl(t,x,u,flag)
    %SFUNTMPL General MATLAB S-Function Template
    %   With MATLAB S-functions, you can define you own ordinary differential
    %   equations (ODEs), discrete system equations, and/or just about
    %   any type of algorithm to be used within a Simulink block diagram.
    %
    %   The general form of an MATLAB S-function syntax is:
    %       [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn)
    %
    %   What is returned by SFUNC at a given point in time, T, depends on the
    %   value of the FLAG, the current state vector, X, and the current
    %   input vector, U.
    %
    %   FLAG   RESULT             DESCRIPTION
    %   -----  ------             --------------------------------------------
    %   0      [SIZES,X0,STR,TS]  Initialization, return system sizes in SYS,
    %                             initial state in X0, state ordering strings
    %                             in STR, and sample times in TS.
    %   1      DX                 Return continuous state derivatives in SYS.
    %   2      DS                 Update discrete states SYS = X(n+1)
    %   3      Y                  Return outputs in SYS.
    %   4      TNEXT              Return next time hit for variable step sample
    %                             time in SYS.
    %   5                         Reserved for future (root finding).
    %   9      []                 Termination, perform any cleanup SYS=[].
    %
    %
    %   The state vectors, X and X0 consists of continuous states followed
    %   by discrete states.
    %
    %   Optional parameters, P1,...,Pn can be provided to the S-function and
    %   used during any FLAG operation.
    %
    %   When SFUNC is called with FLAG = 0, the following information
    %   should be returned:
    %
    %      SYS(1) = Number of continuous states.
    %      SYS(2) = Number of discrete states.
    %      SYS(3) = Number of outputs.
    %      SYS(4) = Number of inputs.
    %               Any of the first four elements in SYS can be specified
    %               as -1 indicating that they are dynamically sized. The
    %               actual length for all other flags will be equal to the
    %               length of the input, U.
    %      SYS(5) = Reserved for root finding. Must be zero.
    %      SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
    %               has direct feedthrough if U is used during the FLAG=3
    %               call. Setting this to 0 is akin to making a promise that
    %               U will not be used during FLAG=3. If you break the promise
    %               then unpredictable results will occur.
    %      SYS(7) = Number of sample times. This is the number of rows in TS.
    %
    %
    %      X0     = Initial state conditions or [] if no states.
    %
    %      STR    = State ordering strings which is generally specified as [].
    %
    %      TS     = An m-by-2 matrix containing the sample time
    %               (period, offset) information. Where m = number of sample
    %               times. The ordering of the sample times must be:
    %
    %               TS = [0      0,      : Continuous sample time.
    %                     0      1,      : Continuous, but fixed in minor step
    %                                      sample time.
    %                     PERIOD OFFSET, : Discrete sample time where
    %                                      PERIOD > 0 & OFFSET < PERIOD.
    %                     -2     0];     : Variable step discrete sample time
    %                                      where FLAG=4 is used to get time of
    %                                      next hit.
    %
    %               There can be more than one sample time providing
    %               they are ordered such that they are monotonically
    %               increasing. Only the needed sample times should be
    %               specified in TS. When specifying more than one
    %               sample time, you must check for sample hits explicitly by
    %               seeing if
    %                  abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
    %               is within a specified tolerance, generally 1e-8. This
    %               tolerance is dependent upon your model's sampling times
    %               and simulation time.
    %
    %               You can also specify that the sample time of the S-function
    %               is inherited from the driving block. For functions which
    %               change during minor steps, this is done by
    %               specifying SYS(7) = 1 and TS = [-1 0]. For functions which
    %               are held during minor steps, this is done by specifying
    %               SYS(7) = 1 and TS = [-1 1].
    %
    %      SIMSTATECOMPLIANCE = Specifices how to handle this block when saving and
    %                           restoring the complete simulation state of the
    %                           model. The allowed values are: 'DefaultSimState',
    %                           'HasNoSimState' or 'DisallowSimState'. If this value
    %                           is not speficified, then the block's compliance with
    %                           simState feature is set to 'UknownSimState'.
    
    
    %   Copyright 1990-2010 The MathWorks, Inc.
    
    %
    % The following outlines the general structure of an S-function.
    %
    switch flag,
    
      %%%%%%%%%%%%%%%%%%
      % Initialization %
      %%%%%%%%%%%%%%%%%%
      case 0,
        [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;
    
      %%%%%%%%%%%%%%%
      % Derivatives %
      %%%%%%%%%%%%%%%
      case 1,
        sys=mdlDerivatives(t,x,u);
    
      %%%%%%%%%%
      % Update %
      %%%%%%%%%%
      case 2,
        sys=mdlUpdate(t,x,u);
    
      %%%%%%%%%%%
      % Outputs %
      %%%%%%%%%%%
      case 3,
        sys=mdlOutputs(t,x,u);
    
      %%%%%%%%%%%%%%%%%%%%%%%
      % GetTimeOfNextVarHit %
      %%%%%%%%%%%%%%%%%%%%%%%
      case 4,
        sys=mdlGetTimeOfNextVarHit(t,x,u);
    
      %%%%%%%%%%%%%
      % Terminate %
      %%%%%%%%%%%%%
      case 9,
        sys=mdlTerminate(t,x,u);
    
      %%%%%%%%%%%%%%%%%%%%
      % Unexpected flags %
      %%%%%%%%%%%%%%%%%%%%
      otherwise
        DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
    
    end
    
    % end sfuntmpl
    
    %
    %=============================================================================
    % mdlInitializeSizes
    % Return the sizes, initial conditions, and sample times for the S-function.
    %=============================================================================
    %
    function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
    
    %
    % call simsizes for a sizes structure, fill it in and convert it to a
    % sizes array.
    %
    % Note that in this example, the values are hard coded.  This is not a
    % recommended practice as the characteristics of the block are typically
    % defined by the S-function parameters.
    %
    sizes = simsizes;
    
    sizes.NumContStates  = 0;
    sizes.NumDiscStates  = 0;
    sizes.NumOutputs     = 0;
    sizes.NumInputs      = 0;
    sizes.DirFeedthrough = 1;
    sizes.NumSampleTimes = 1;   % at least one sample time is needed
    
    sys = simsizes(sizes);
    
    %
    % initialize the initial conditions
    %
    x0  = [];
    
    %
    % str is always an empty matrix
    %
    str = [];
    
    %
    % initialize the array of sample times
    %
    ts  = [0 0];
    
    % Specify the block simStateCompliance. The allowed values are:
    %    'UnknownSimState', < The default setting; warn and assume DefaultSimState
    %    'DefaultSimState', < Same sim state as a built-in block
    %    'HasNoSimState',   < No sim state
    %    'DisallowSimState' < Error out when saving or restoring the model sim state
    simStateCompliance = 'UnknownSimState';
    
    % end mdlInitializeSizes
    
    %
    %=============================================================================
    % mdlDerivatives
    % Return the derivatives for the continuous states.
    %=============================================================================
    %
    function sys=mdlDerivatives(t,x,u)
    
    sys = [];
    
    % end mdlDerivatives
    
    %
    %=============================================================================
    % mdlUpdate
    % Handle discrete state updates, sample time hits, and major time step
    % requirements.
    %=============================================================================
    %
    function sys=mdlUpdate(t,x,u)
    
    sys = [];
    
    % end mdlUpdate
    
    %
    %=============================================================================
    % mdlOutputs
    % Return the block outputs.
    %=============================================================================
    %
    function sys=mdlOutputs(t,x,u)
    
    sys = [];
    
    % end mdlOutputs
    
    %
    %=============================================================================
    % mdlGetTimeOfNextVarHit
    % Return the time of the next hit for this block.  Note that the result is
    % absolute time.  Note that this function is only used when you specify a
    % variable discrete-time sample time [-2 0] in the sample time array in
    % mdlInitializeSizes.
    %=============================================================================
    %
    function sys=mdlGetTimeOfNextVarHit(t,x,u)
    
    sampleTime = 1;    %  Example, set the next hit to be one second later.
    sys = t + sampleTime;
    
    % end mdlGetTimeOfNextVarHit
    
    %
    %=============================================================================
    % mdlTerminate
    % Perform any end of simulation tasks.
    %=============================================================================
    %
    function sys=mdlTerminate(t,x,u)
    
    sys = [];
    
    % end mdlTerminate
    

    S-函数的几个概念:

    1)  直接馈通

    在编写S-函数时,初始化函数中需要对sizes.DirFeedthrough 进行设置,如果输出函数mdlOutputs或者对于变采样时间的mdlGetTimeOfNextVarHit是输入u的函数,则模块具有直接馈通的特性sizes.DirFeedthrough=1;否则为0。

     

    2)  采样时间

    仿真步长就是整个模型的基础采样时间,各个子系统或模块的采样时间,必须以这个步长为整数倍。

    连续信号和离散信号对计算机而言其实都是采样而来的,只是采样时间不同,连续信号采样时间可认为趋于0且基于微分方程,离散信号采样时间比较长基于差分方程。离散信号当前状态由前一个时刻的状态决定,连续信号可以通过微分方程计算得到。如果要将连续信号离散化还要考虑下信号能否恢复的问题,即香农定理。

     

    采样时间点的确定:下一个采样时间=(n*采样间隔)+ 偏移量,n表示当前的仿真步,从0开始。

    对于连续采样时间,ts可以设置为[0 0],其中偏移量为0;

    对于离散采样时间,ts假设为[0.25 0.1],表示在S-函数仿真开始后0.1s开始每隔0.25s运行一次,当然每个采样时刻都会调用mdlOutPuts和mdlUpdate函数;

    对于变采样时间,即离散采样时间的两次采样时间间隔是可变的,每次仿真步开始时都需要用mdlGetTimeNextVarHit计算下一个采样时间的时刻值。ts可以设置为[-2 0]。

    对于多个任务,每个任务都可以以不同的采样速率执行S-函数,假设任务A在仿真开始每隔0.25s执行一次,任务B在仿真后0.1s每隔1s执行一次,那么ts设置为[0.25 0.1;1.0 0.1],具体到S-函数的执行时间为[0 0.1 0.25 0.5 0.75 1.0 1.1…]。

    如果用户想继承被连接模块的采样时间,ts只要设置为[-1 0]。

    子函数的作用

     

    (1).mdlInitializeSizes函数-初始化函数
    function[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes  
    sizes = simsizes;  
    sizes.NumContStates  = 0;  %连续状态个数  
    sizes.NumDiscStates  = 0;  %离散状态个数  
    sizes.NumOutputs     = 0;  %输出个数  
    sizes.NumInputs      = 0;  %输入个数  
    sizes.DirFeedthrough = 1;  %是否直接馈通  
    sizes.NumSampleTimes = 1;  %采样时间个数,至少一个  
    sys = simsizes(sizes);     %将size结构传到sys中  
    x0  = [];                     %初始状态向量,由传入的参数决定,没有为空  
    str = [];  
    ts  = [0 0];                  %设置采样时间,这里是连续采样,偏移量为0  
    % Specify the blocksimStateCompliance. The allowed values are:  
    %    'UnknownSimState', < The defaultsetting; warn and assume DefaultSimState  
    %    'DefaultSimState', < Same sim state as abuilt-in block  
    %    'HasNoSimState',   < No sim state  
    %    'DisallowSimState' < Error out whensaving or restoring the model sim state  
    simStateCompliance = 'UnknownSimState';
    
    (2).mdlGetTimeOfNextVarHit(t,x,u)函数-计算下一个采样时间
    functionsys=mdlGetTimeOfNextVarHit(t,x,u)  
    sampleTime = 1;    %  Example, set the next hit to be one secondlater.  
    sys = t + sampleTime;  
    
    (3).mdlOutputs函数-计算S函数输出
    functionsys=mdlOutputs(t,x,u)  
    sys = [];  
    
    (4).mdlUpdate函数-更新
    function sys=mdlUpdate(t,x,u)  
    sys = [];  
    
    (5).mdlDerivatives函数-微分函数(计算连续状态导数)
    functionsys=mdlDerivatives(t,x,u)  
    sys = [];  
    
    (6).mdlTerminate函数-终止仿真
    functionsys=mdlTerminate(t,x,u)  
    sys = [];  
    

      

    function [sys,x0,str,ts,simStateCompliance] = sfuntmpl_c(t,x,u,flag)
    
    %%%%Simulink中s函数模板的翻译版
    %[sys,x0,str,ts,simStateCompliance] = sfuntmpl(t,x,u,flag,p1,…pn)
    
    % flag result 描述 
    % —– —— ——————————————– 
    % 0 [sizes,x0,str,Ts] 初始化,返回SYS的大小,初始状态x0,str,采样时间Ts 
    % 1 DX 返回连续状态微分SYS. 
    % 2 DS 更新离散状态 SYS = X(n+1) 
    % 3 Y 返回输出SYS. 
    % 4 TNEXT Return next time hit for variable step sample time in SYS. 
    % 5 Reserved for future (root finding). 
    % 9 [] 结束 perform any cleanup SYS=[].
    
    % 当flag=0时,以下信息必须赋值回传 
    % SYS(1) = 连续状态个数 
    % SYS(2) = 离散状态个数 
    % SYS(3) = 输出量个数 
    % SYS(4) = 输入量个数 注:上述4个变量可以赋值为-1,表示其值可变 
    % SYS(5) = 保留值。为0. 
    % SYS(6) = 直接馈通标志(1=yes, 0=no).如果u在flag=3时被使用,说明S函数是直接馈通,赋值为1. 否则为0. 
    % SYS(7) = 采样时间个数,Ts的行数 
    % 
    % X0 = 初始状态。没有则赋值为[].除flag=0外,被忽略。 
    % STR = 系统保留,设为[]. 
    % TS = m*2 矩阵。(采样周期,偏移量) 
    % TS = [0 0, : 连续采样 
    % 0 1, : 在1个Ts后连续采样 
    % PERIOD OFFSET, : Discrete sample time where 
    % PERIOD > 0 & OFFSET < PERIOD. 
    % -2 0]; : 变步长离散采样, 
    % flag=4用于决定下一个采样时刻 
    % 注: 
    % 若希望每个时间步都运行,则设Ts=[0,0] 
    % 若希望继承采样时间运行,则设Ts=[-1,0] 
    % 若希望继承采样时间运行,且希望在微步内不变化,应该设Ts=[-1,1] 
    % 若希望仿真开始0.1s后每隔0.25秒运行,则设Ts=[0.25,0.1] 
    % 若希望按照不同速率执行不同任务,则Ts应按照升序排列。 
    % 即:每隔0.25秒执行一个任务,同时在开始0.1秒后,每隔1秒执行另一个任务 
    % Ts=[0.25,0; 1.0,0.1],则simulink将在下列时刻执行s函数[0,0.1,0.25,0.5,0.75,1,1.1,…]
    
    % 以下是S函数的主函数 
    switch flag, 
    case 0, % 初始化 
    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;
    
    case 1, % 连续时间导数 
    sys=mdlDerivatives(t,x,u);
    
    case 2, % 更新离散状态量 
    sys=mdlUpdate(t,x,u);
    
    case 3, % 计算输出 
    sys=mdlOutputs(t,x,u);
    
    case 4, % 计算下一步采样时刻 
    sys=mdlGetTimeOfNextVarHit(t,x,u);
    
    case 9, % 结束仿真 
    sys=mdlTerminate(t,x,u);
    
    otherwise % 未知flag值 
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); 
    end % S函数主程序结束
    
    %============================================================================= 
    % mdlInitializeSizes 
    % 返回s函数的sizes、初始条件、采样时刻 
    %============================================================================= 
    function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes 
    % 调用simsizes函数为sizes结构赋值 
    % simsizes函数是S函数模块特有的。它的结构和代码是固定的。
    
    sizes = simsizes; 
    sizes.NumContStates = 0; %连续状态个数 
    sizes.NumDiscStates = 0; %离散状态个数 
    sizes.NumOutputs = 0; %输出量个数 
    sizes.NumInputs = 0; %输入量个数 
    sizes.DirFeedthrough = 1; %直接馈通标志 
    sizes.NumSampleTimes = 1; % 至少有一个采样时刻 
    sys = simsizes(sizes);
    
    x0 = 0; % 状态初始化 
    str = []; % str 始终为空 
    ts = [0 0];% 初始化采样时间
    
    % 指定simStateCompliance的值. 
    % ‘UnknownSimState’, < 默认值; warn and assume DefaultSimState 
    % ‘DefaultSimState’, < Same sim state as a built-in block 
    % ‘HasNoSimState’, < No sim state 
    % ‘DisallowSimState’ < Error out when saving or restoring the model sim state 
    simStateCompliance = 'UnknownSimState'; 
    % 子函数mdlInitializeSizes 结束
    
    %============================================================================= 
    % mdlDerivatives 
    % 返回连续状态量的导数 
    %============================================================================= 
    function sys=mdlDerivatives(t,x,u)
    
    sys = [];
    
    % 子函数mdlDerivatives结束
    
    %============================================================================= 
    % mdlUpdate 
    %更新离散时间状态,采样时刻和主时间步的要求。 
    %============================================================================= 
    function sys=mdlUpdate(t,x,u)
    
    sys = []; 
    % 子函数 mdlUpdate 结束
    
    %============================================================================= 
    % mdlOutputs 
    % 计算并返回模块输出量 
    %============================================================================= 
    function sys=mdlOutputs(t,x,u)
    
    sys = [];
    
    % 子函数 mdlOutputs 结束
    
    %============================================================================= 
    % mdlGetTimeOfNextVarHit 
    % 返回下一个采样时刻。注意返回结果是一个绝对时间,只在Ts=[-2,0]时使用。 
    %============================================================================= 
    function sys=mdlGetTimeOfNextVarHit(t,x,u)
    
    sampleTime = 1; % 例子。设置下一个采样时刻为1s后。 
    sys = t + sampleTime;
    
    % 子函数 mdlGetTimeOfNextVarHit 结束
    
    %============================================================================= 
    % mdlTerminate 
    % 仿真结束 
    %============================================================================= 
    % 
    function sys=mdlTerminate(t,x,u)
    
    sys = [];
    
    % 子函数 mdlTerminate结束
    

      

    function [sys,x0,str,ts,simStateCompliance]=limintm(t,x,u,flag,lb,ub,xi)
    %传入的三个参数放在后面lb,ub,xi的位置  
    %LIMINTM Limited integrator implementation.  
    %   Example MATLAB file S-function implementing a continuous limited integrator  
    %   where the output is bounded by lower bound (LB) and upper bound (UB)  
    %   with initial conditions (XI).  
    %     
    %   See sfuntmpl.m for a general S-function template.  
    %  
    %   See also SFUNTMPL.  
          
    %   Copyright 1990-2009 The MathWorks, Inc.  
    %   $Revision: 1.1.6.2 $  
       
    switch flag  
       
      %%%%%%%%%%%%%%%%%%  
      % Initialization %  
      %%%%%%%%%%%%%%%%%%  
      case 0           
        [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(lb,ub,xi);  
       
      %%%%%%%%%%%%%%%  
      % Derivatives %  
      %%%%%%%%%%%%%%%  
      case 1  
        sys = mdlDerivatives(t,x,u,lb,ub);  
       
      %%%%%%%%%%%%%%%%%%%%%%%%  
      % Update and Terminate %  
        
      %%%%%%%%%%%%%%%%%%%%%%%%  
      case {2,9}  
        sys = []; % do nothing  
       
      %%%%%%%%%%  
      % Output %  
      %%%%%%%%%%  
      case 3  
        sys = mdlOutputs(t,x,u);   
       
      otherwise  
        DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));  
    end  
       
    % end limintm  
       
    %  
    %=============================================================================  
    % mdlInitializeSizes  
    % Return the sizes, initial conditions, and sample times for the S-function.  
    %=============================================================================  
    %  
    function [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(lb,ub,xi)  
       
    sizes = simsizes;  
    sizes.NumContStates  = 1;%1个连续状态,即积分状态  
    sizes.NumDiscStates  = 0;  
    sizes.NumOutputs     = 1;  
    sizes.NumInputs      = 1;  
    sizes.DirFeedthrough = 0;  
    sizes.NumSampleTimes = 1;  
       
    sys = simsizes(sizes);  
    str = [];  
    x0  = xi; %积分状态初始条件‘  
    ts  = [0 0];   % sample time: [period, offset]  
       
    % speicfy that the simState for this s-function is same as the default  
    simStateCompliance = 'DefaultSimState';  
       
    % end mdlInitializeSizes  
       
    %  
    %=============================================================================  
    % mdlDerivatives  
    % Compute derivatives for continuous states.  
    %=============================================================================  
    %  
    function sys = mdlDerivatives(t,x,u,lb,ub)  
       
    if (x <= lb & u < 0)  | (x>= ub & u>0 )  
      sys = 0;  
    else  
      sys = u;  
    end  
       
    % end mdlDerivatives  
       
    %  
    %=============================================================================  
    % mdlOutputs  
    % Return the output vector for the S-function  
    %=============================================================================  
    %  
    function sys = mdlOutputs(t,x,u)  
       
    sys = x;  
       
    % end mdlOutputs
    

      

      

      

      

      

      

     

  • 相关阅读:
    ABP理论学习之异常处理
    ABP理论学习之导航(Navigation)
    ABP理论学习之验证DTO
    C#程序实现窗体的最大化/最小化
    残缺棋盘的覆盖问题
    23:区间内的真素数
    最大质因子序列
    02:二分法求函数的零点
    01:查找最接近的元素
    最大连续和问题【四种不同的算法】
  • 原文地址:https://www.cnblogs.com/ggg-327931457/p/12767472.html
Copyright © 2020-2023  润新知