• Goldbach's Conjecture


                         Goldbach's Conjecture
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example: 
    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8
    20
    42
    0
    

    Sample Output

    8 = 3 + 5
    20 = 3 + 17
    42 = 5 + 37
     1 #include<iostream>
     2 #include<cstdlib>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<cmath>
     7 using namespace std;
     8 bool isprime ( int k )
     9 {
    10     int t = sqrt ( k + 0.5 ) ;
    11     for ( int i = 2  ; i <= t ; i ++ )
    12         if ( k % i == 0 )
    13             return false ;
    14     return true ;
    15 }
    16 int main()
    17 {
    18  //   freopen ("a.txt" , "r" , stdin );
    19     int n ;
    20     while ( scanf ("%d", &n) , n )
    21     {
    22         int i ;
    23         int t = n / 2 ;
    24         for ( i = 3 ; i <= t ; i += 2 )
    25             if ( isprime ( i ) && isprime ( n - i ) )
    26                 break ;
    27         printf ( "%d = %d + %d
    " , n , i , n - i ) ;
    28     }
    29     return 0;
    30 }
    n = isprime(i) + isprime(n - i)
  • 相关阅读:
    Phantomjs 一些简单实用
    JAVA中关于数组的定义
    itextpdf JAVA 输出PDF文档
    MyBatis在insert插入操作时返回主键ID的配置
    卫士通加密机 控制台终端管理程序
    通过DOS、SHELL批处理命令加载Lib并编译和打包Java项目(或者运行项目)
    HTML单选按钮样式更换
    JAVA生成图片缩略图、JAVA截取图片局部内容
    JAVA笔记 之 Thread线程
    JAVA笔记 之 JDK新特性
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4272108.html
Copyright © 2020-2023  润新知