• Bookshelf 2


    Bookshelf 2
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    Farmer John recently bought another bookshelf for the cow library, but the shelf is getting filled up quite quickly, and now the only available space is at the top.

    FJ has N cows (1 ≤ N ≤ 20) each with some height of Hi (1 ≤ Hi ≤ 1,000,000 - these are very tall cows). The bookshelf has a height of B (1 ≤ B ≤ S, where S is the sum of the heights of all cows).

    To reach the top of the bookshelf, one or more of the cows can stand on top of each other in a stack, so that their total height is the sum of each of their individual heights. This total height must be no less than the height of the bookshelf in order for the cows to reach the top.

    Since a taller stack of cows than necessary can be dangerous, your job is to find the set of cows that produces a stack of the smallest height possible such that the stack can reach the bookshelf. Your program should print the minimal 'excess' height between the optimal stack of cows and the bookshelf.

    Input

    * Line 1: Two space-separated integers: N and B
    * Lines 2..N+1: Line i+1 contains a single integer: Hi

    Output

    * Line 1: A single integer representing the (non-negative) difference between the total height of the optimal set of cows and the height of the shelf.

    Sample Input

    5 16
    3
    1
    3
    5
    6

    Sample Output

    1

     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<algorithm>
     4 using namespace std ;
     5 int dp[20001006] ;
     6 int B , n ;
     7 int a[25] ;
     8 int cmp (int x , int y ) {
     9     return x > y ;
    10 }
    11 int main () {
    12    // freopen ("a.txt" , "r" , stdin );
    13     while (scanf ("%d%d" , &n , &B ) != EOF ) {
    14         for (int i = 0 ; i < n ; i++ ) {
    15             scanf ("%d" , &a[i] ) ;
    16         }
    17         sort ( a , a + n , cmp ) ;
    18         for (int i = 0 ; i <= B + 1000 ; i++ ) {
    19             dp[i] = 0 ;
    20         }
    21         dp[0] = 1 ;
    22         for (int i = 0 ; i < n ; i++ ) {
    23             for (int j = B + 1000; j >= a[i] ; j-- ) {
    24                 if ( dp[j - a[i]] ) {
    25                     dp[j] = 1 ;
    26                   //  printf("%d " , j) ;
    27                 }
    28             }
    29            // printf ("
    ") ;
    30         }
    31       //  printf("
    ") ;
    32         for (int j = B  ; j <= B + 1000 ; j++ ) {
    33             if ( dp[j] ) {
    34                 printf ("%d
    " , j - B ) ;
    35                 break ;
    36             }
    37         }
    38     }
    39     return 0 ;
    40 }
    01背包
  • 相关阅读:
    ZJU_1145 OR POJ_1100 Dreisam Equations
    数据结构基础之队列
    The New Villa
    Mission Impossible 6
    数据结构基础之栈
    POJ_1185_炮兵阵地 dp+状态压缩
    (转载)Dig命令的用法
    (转载)服务发现系统etcd介绍
    golang 导入包
    1.4方程求根之弦截法
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4269725.html
Copyright © 2020-2023  润新知