• Kaggle预测房价知识点 01数据预处理


    Stacked Regressions : Top 4% on LeaderBoard

    1. subprocess的check_output模块,用来得到命令行的输出结果

    # kaggle代码: 用来输出显示目录下的文件
    print(check_output(["ls", "../input"]).decode("utf8"))
    
    # 示例代码: 对命令行输出的结果进行操作
    output = subprocess.check_output(["python3", "xx.py"], shell = False)
    if (output.find("yes") >= 0): print("yes")
    else: print("no")
    

    2. csv操作

    train = pd.read_csv('../input/train.csv')
    # 显示csv的前五行
    train.head(5)
    # 丢弃ID列
    train.drop("Id", axis = 1, inplace = True)
    # 删除特定数据
    train = train.drop(train[(train['GrLivArea']>4000) & (train['SalePrice']<300000)].index)
    # 连接数据
    all_data = pd.concat((train, test)).reset_index(drop=True)
    

    3. 可视化

    fig, ax = plt.subplots()
    ax.scatter(x = train['GrLivArea'], y = train['SalePrice'])
    plt.ylabel('SalePrice', fontsize=13)
    plt.xlabel('GrLivArea', fontsize=13)
    plt.show()
    

    可视化xy数据

    # seaborn可视化数据分布
    sns.distplot(train['SalePrice'] , fit=norm);
    
    # Get the fitted parameters used by the function
    (mu, sigma) = norm.fit(train['SalePrice'])
    print( '
     mu = {:.2f} and sigma = {:.2f}
    '.format(mu, sigma))
    
    #Now plot the distribution
    plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)],
                loc='best')
    plt.ylabel('Frequency')
    plt.title('SalePrice distribution')
    
    #Get also the QQ-plot
    fig = plt.figure()
    res = stats.probplot(train['SalePrice'], plot=plt)
    plt.show()
    


    4. NULL值检查、处理

    all_data_na = (all_data.isnull().sum() / len(all_data)) * 100
    all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_values(ascending=False)[:30]
    missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
    missing_data.head(20)
    
    # 以None代替
    for col in ('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'):
        all_data[col] = all_data[col].fillna('None')
    # 以临近值代替
    all_data["LotFrontage"] = all_data.groupby("Neighborhood")["LotFrontage"].transform(
        lambda x: x.fillna(x.median()))
    

    5. 数据关联性检查

    corrmat = train.corr()
    plt.subplots(figsize=(12,9))
    sns.heatmap(corrmat, vmax=0.9, square=True)
    

    6. Label Encoding

    from sklearn.preprocessing import LabelEncoder
    cols = ('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond', 
            'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1', 
            'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope',
            'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallCond', 
            'YrSold', 'MoSold')
    # process columns, apply LabelEncoder to categorical features
    for c in cols:
        lbl = LabelEncoder() 
        lbl.fit(list(all_data[c].values)) 
        all_data[c] = lbl.transform(list(all_data[c].values))
    
    # shape        
    print('Shape all_data: {}'.format(all_data.shape))
    

    7. OneHot Encoding

    all_data = pd.get_dummies(all_data)
    print(all_data.shape)
    
  • 相关阅读:
    2019-2020-1 20175201 20175215 20175229实验五 通讯协议设计
    2019-2020-1 20175201 20175215 20175229实验四 外设驱动程序设计
    2019-2020-1 实验三-并发程序 20175215
    20175201 20175215 20175229 实验二 固件程序设计
    冲刺博客汇总
    2018-2019-2 20175215 实验五《网络编程与安全》实验报告
    Int和Integer(课上测试)
    MySort(选做)
    2019-2020-2 20175234 赵诗玥 《网络对抗技术》 Exp1 PC平台逆向破解
    2019-2020-2 20175234 赵诗玥《网络对抗技术》 Exp0 Kali安装
  • 原文地址:https://www.cnblogs.com/geoli/p/12752806.html
Copyright © 2020-2023  润新知