• caffe用到的命令和零碎知识


    这些东西总是忘记来回查,特此记录一下:


    1. caffe标注txt文件的读取与保存(使用pandas.DataFrame)

    读取:
    train_data = pd.read_csv('Train.txt', sep=' ',encoding='gbk',index_col=0, header=None)
    
    保存
    test1.to_csv('test1.txt', sep=' ',encoding='gbk', header=None)
    

    实例:

    2. LMDB数据读取Data层:

    caffe生成的lmdb数据,有生产2文件夹和4文件夹版本, 对应data层如下:

    windows版本:

    layer {
      name: "data"
      type: "Data"
      top: "data"
      include {
        phase: TRAIN
      }
       transform_param {
        mirror: true
        crop_size: 224
        mean_file: "mean.binaryproto"
        contrast_brightness_adjustment: true
        smooth_filtering: true
        max_color_shift: 10
        max_smooth: 6
        apply_probability: 0.5
      }
      data_param {
        source: "CaffeLMDB/TrainDataDB"
        batch_size: 24
        backend: LMDB
      }
    }
    layer {
      name: "label"
      type: "Data"
      top: "label"
      include {
        phase: TRAIN
      }
      data_param {
        source: "CaffeLMDB/TrainlableDB"
        batch_size: 24
        backend: LMDB
      }
    }
    layer {
      name: "data"
      type: "Data"
      top: "data"
      include {
        phase: TEST
      }
       transform_param {
        mirror: false
        crop_size: 224
        mean_file: "mean.binaryproto"
      }
      data_param {
        source: "CaffeLMDB/ValDataDB"
        batch_size: 1
        backend: LMDB
      }
    }
    layer {
      name: "label"
      type: "Data"
      top: "label"
      include {
        phase: TEST
      }
      data_param {
        source: "CaffeLMDB/VallableDB"
        batch_size: 1
        backend: LMDB
      }
    }
    

    我的linux版本:

    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      include {
        phase: TRAIN
      }
      transform_param {
        mirror: true
        crop_size: 331
        mean_file: "./lmdb_data/img_test_lmdb/mean.binaryproto"
        contrast_brightness_adjustment: true
        smooth_filtering: true
        max_color_shift: 10
        max_smooth: 6
        apply_probability: 0.5
      }
      data_param {
        source: "./lmdb_data/img_test_lmdb"
        batch_size: 8
        backend: LMDB
      }
    }
    
    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      include {
        phase: TEST
      }
      transform_param {
        mirror: false
        crop_size: 331
        mean_file: "./lmdb_data/img_train_lmdb/mean.binaryproto"
      }
      data_param {
        source: "./lmdb_data/img_train_lmdb"
        batch_size: 1
        backend: LMDB
      }
    }
    

    3. caffe训练命令

    #!/bin/bash
    set -e 
    # 设置环境变量, 制定caffe路径                                                                                                                                                                                
    export PATH=/home/zhuoshi/ZSZT/Geoffrey/caffe/caffe-master/build/tools:$PATH
    
    # 设置开启日志
    GLOG_logtostderr=0 
    GLOG_log_dir='./log' 
    caffe train 
         --solver=solver.prototxt 
         --weights=snapshot/solver_iter_50000.caffemodel # 这里指定caffe模型文件
         --snapshot=snapshot/solver_iter_20000.solverstate # 这里指定caffe中间态文件
         --gpu=0 # 可以指定序号或者`all`
    

    snapshotweights只能指定一个用于继续训练和finetune

    4. caffe的solver文件解释

    # 网络的模型文件
    net: "./train.prototxt"
    # test_iter * 测试batch_size = 测试集大小
    test_iter: 2000
    # 每迭代多少次测试一遍
    test_interval: 25000
    base_lr: 0.001
    lr_policy: "step"
    gamma: 0.1
    # 每隔多少次衰减学习率
    stepsize: 50000
    # 迭代多少次显示一次日志
    display: 100
    # 最大迭代次数
    max_iter: 500000
    momentum: 0.9
    weight_decay: 0.0005
    # 每隔多少次保存
    snapshot: 20000 
    snapshot_prefix: "./snapshot"
    solver_mode: GPU
    

    5. txt2lmdb脚本

    地址

    #!/usr/bin/env sh
    # Create the imagenet lmdb inputs
     
    ####################################################
    # 配置
    ####################################################
    EXAMPLE=/home/zhuoshi/ZSZT/Geoffrey/Person-resnet18/lmdb_data       # lmdb存储位置
    DATA=/home/zhuoshi/ZSZT/Geoffrey/Person-resnet18/data                   # txt文件所在文件夹 - 同时也是.txt相对路径的起始点(图片绝对路径=$DATA+txt中相对路径)
    CAFFE_HOME=/home/zhuoshi/ZSZT/Geoffrey/caffe/caffe-master               # caffe的工具库
    HEIGHT=256
    WIDTH=256
    ####################################################
    # 处理train
    ####################################################
    echo "Creating train lmdb..."
    TRAIN_PATH=$EXAMPLE/img_train_lmdb
    # 如果存在,删除原数据
    if [ ! -d "$TRAIN_PATH/" ];then
        echo "文件不存在"
        mkdir -p $TRAIN_PATH/
    else
        echo "$TRAIN_PATH文件夹已存在"
        rm -rf $TRAIN_PATH/
        # mkdir -p $TRAIN_PATH/
    fi
    # 生成lmdb
    $CAFFE_HOME/build/tools/convert_imageset --shuffle --resize_height=$HEIGHT --resize_width=$WIDTH  $DATA/  $DATA/train.txt  $TRAIN_PATH  # 
    echo "Creating train lmdb Done!, Create mean.binaryproto..."
    # # 计算图片均值
    $CAFFE_HOME/build/tools/compute_image_mean $TRAIN_PATH/ $TRAIN_PATH/mean.binaryproto
    echo "train Done!"
    
    ####################################################
    # 处理test
    ####################################################
    echo "Creating test lmdb ..."
    TEST_PATH=$EXAMPLE/img_test_lmdb
    # 如果存在,删除原数据
    if [ ! -d "$TEST_PATH/" ];then
        echo "文件不存在"
        mkdir $TEST_PATH
    else
        echo "$TEST_PATH文件夹已存在"
        rm -rf $TEST_PATH/
        # mkdir $TEST_PATH/
    fi
    # 生成lmdb
    $CAFFE_HOME/build/tools/convert_imageset --shuffle --resize_height=256 --resize_width=256  $DATA/  $DATA/test.txt  $TEST_PATH  # 
    echo "Creating test lmdb Done!, Create mean.binaryproto..."
    # # 计算图片均值
    $CAFFE_HOME/build/tools/compute_image_mean $TEST_PATH/ $TEST_PATH/mean.binaryproto
    echo "test Done!"
    
    ####################################################
    echo "Done."
    

    windows版本的bat命令:

    echo "Creating train Mulit-Out CaffeLMDB..."
    
    del "E:/CaffeLMDB/TrainDataDB*.*" /f /s 
    del "E:/CaffeLMDB/TrainlableDB*.*" /f /s 
    
    del "E:/CaffeLMDB/ValDataDB*.*" /f /s 
    del "E:/CaffeLMDB/VallableDB*.*" /f /s 
    
    rd /s /q "E:/CaffeLMDB/TrainDataDB"
    rd /s /q "E:/CaffeLMDB/TrainlableDB"
    
    rd /s /q "E:/CaffeLMDB/ValDataDB"
    rd /s /q "E:/CaffeLMDB/VallableDB"
    
    "E:/CaffeTool/Caffe_Release/convert_imageset" --gray=false --shuffle --resize_height=224 --resize_width=224 "" "E:/CaffeTrain/PersonProperty/data/Train.txt"  "E:/CaffeLMDB/TrainDataDB" "E:/CaffeLMDB/TrainlableDB" 20
    
    "E:/CaffeTool/Caffe_Release/convert_imageset" --gray=false --shuffle --resize_height=224 --resize_width=224 "" "E:/CaffeTrain/PersonProperty/data/Validate.txt"  "E:/CaffeLMDB/ValDataDB" "E:/CaffeLMDB/VallableDB" 20
    
    pause
    

    6. 编译错误

    caffe编译错误记录

    7. anaconda环境编译caffe

    使用Anaconda虚拟环境编译caffe-gpu pycaffe

  • 相关阅读:
    window安装maven仓库
    python代码实现将json中所有字段四舍五入保留n位小数
    Centos搭建Git服务器,添加用户名密码实现多用户管理
    python的测试工具大全
    TypeError: cannot serialize '_io.BufferedReader' object 问题记录
    mysql数据库无法插入中文字符
    jquery的相关用法
    js相关用法
    二分法+装饰器(带返回值,无敌参数,批量执行/取消装饰器)
    网络编程三 Socket
  • 原文地址:https://www.cnblogs.com/geoffreyone/p/11309960.html
Copyright © 2020-2023  润新知