• [bzoj2127]happiness——最小割


    这个题太恶心了。。。并不想继续做了。。。

    本代码在bzoj上TLE!
    大致说一下思路: 建立ST,首先由S连边(S,u,a)a代表学文的分数,连向T(u,T,b)b表示学理的分数,这样构造出了两个人独立的分数。

    然后考虑联合分数,对于相邻的两个点xy,看下图(盗个图:

      设xy都学文的分数为w1,都学理的分数为w2,则a=w1/2,b=w1/2,c=w2/2,d=w2/2,e=(w1+w2)/2,每一种割与其对应的亏损分数如下:

      a+b          -w1      都学理->w2
    
      c+d          -w2      都学文->w1
    
      a+d+e       -w1-w2     不同->   0
    
      c+d+e       -w1-w2    ...
    

      注意双向边e,我们是变成两条有向边加入网络,而又因为我们求最小割用的是最大流的算法,所以这条边可以看作是一条双向且权值为e的边。

      然后把权值*2,解决精度问题。

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 105; /////////////////////////////////////////////
    const int maxv = maxn * maxn * 2;
    const int inf = INT_MAX;
    int n, m, s, t, v;
    struct edge {
      int from;
      int to;
      int cap;
    };
    vector<edge> edges;
    vector<int> G[maxv];
    int dist[maxv], iter[maxv];
    int z[maxv][maxv];
    bool zz[maxv][maxv];
    inline int read() {
      char c = getchar();
      int f = 1, x = 0;
      while (!isdigit(c)) {
        if (c == '-')
          f = -1;
        c = getchar();
      }
      while (isdigit(c))
        x = x * 10 + c - '0', c = getchar();
      return x * f;
    }
    inline void add_edge(int from, int to, int cap) {
      edges.push_back((edge){from, to, cap});
      edges.push_back((edge){to, from, 0});
      int m = edges.size();
      G[from].push_back(m - 2);
      G[to].push_back(m - 1);
    }
    inline void bfs(int s) {
      memset(dist, -1, sizeof(dist));
      dist[s] = 0;
      queue<int> q;
      q.push(s);
      while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (int i = 0; i < G[u].size(); i++) {
          edge &e = edges[G[u][i]];
          if (e.cap > 0 && dist[e.to] == -1) {
            dist[e.to] = dist[u] + 1;
            q.push(e.to);
          }
        }
      }
    }
    inline int dfs(int s, int t, int flow) {
      if (s == t)
        return flow;
      for (int &i = iter[s]; i < G[s].size(); i++) {
        edge &e = edges[G[s][i]];
        if (e.cap > 0 && dist[e.to] > dist[s]) {
          int d = dfs(e.to, t, min(flow, e.cap));
          if (d > 0) {
            e.cap -= d;
            edges[G[s][i] ^ 1].cap += d;
            return d;
          }
        }
      }
      return 0;
    }
    inline int dinic(int s, int t) {
      int flow = 0;
      while (1) {
        bfs(s);
        if (dist[t] == -1)
          return flow;
        memset(iter, 0, sizeof(iter));
        int F;
        while (F = dfs(s, t, inf))
          flow += F;
      }
    }
    int main() {
      // freopen("input", "r", stdin); //////////////////////////
      memset(z, 0, sizeof(z));
      memset(zz, 0, sizeof(zz));
      scanf("%d %d", &n, &m);
      s = 0;         //文科
      t = n * m + 1; //理科
      v = t + 1;
      int ans = 0;
      for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++) {
          int x;
          x = read();
          x <<= 1;
          z[s][(i - 1) * m + j] += x;
          zz[s][(i - 1) * m + j] = 1;
        }
      for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++) {
          int x;
          x = read();
          x <<= 1;
          z[(i - 1) * m + j][t] += x;
          zz[(i - 1) * m + j][t] = 1;
        }
      for (int i = 1; i < n; i++) {
        for (int j = 1; j <= m; j++) {
          int x;
          x = read();
          z[(i - 1) * m + j][i * m + j] += x;
          z[s][(i - 1) * m + j] += x;
          z[s][i * m + j] += x;
          zz[(i - 1) * m + j][i * m + j] = 1;
          zz[s][(i - 1) * m + j] = 1;
          zz[s][i * m + j] = 1;
          add_edge((i - 1) * m + j, i * m + j, x);
          add_edge(i * m + j, (i - 1) * m + j, x);
        }
      }
      for (int i = 1; i < n; i++) {
        for (int j = 1; j <= m; j++) {
          int x;
          x = read();
          z[(i - 1) * m + j][i * m + j] += x;
          z[(i - 1) * m + j][t] += x;
          z[i * m + j][t] += x;
          zz[(i - 1) * m + j][i * m + j] = 1;
          zz[(i - 1) * m + j][t] = 1;
          zz[i * m + j][t] = 1;
          add_edge((i - 1) * m + j, i * m + j, x);
          add_edge(i * m + j, (i - 1) * m + j, x);
        }
      }
      for (int i = 1; i <= n; i++) {
        for (int j = 1; j < m; j++) {
          int x;
          x = read();
          z[(i - 1) * m + j][(i - 1) * m + j + 1] += x;
          z[s][(i - 1) * m + j] += x;
          z[s][(i - 1) * m + j + 1] += x;
          zz[(i - 1) * m + j][(i - 1) * m + j + 1] = 1;
          zz[s][(i - 1) * m + j] = 1;
          zz[s][(i - 1) * m + j + 1] = 1;
          add_edge((i - 1) * m + j, (i - 1) * m + j + 1, x);
          add_edge((i - 1) * m + j + 1, (i - 1) * m + j, x);
        }
      }
      for (int i = 1; i <= n; i++) {
        for (int j = 1; j < m; j++) {
          int x;
          x = read();
          z[(i - 1) * m + j][(i - 1) * m + j + 1] += x;
          z[(i - 1) * m + j][t] += x;
          z[(i - 1) * m + j + 1][t] += x;
          zz[(i - 1) * m + j][(i - 1) * m + j + 1] = 1;
          zz[(i - 1) * m + j][t] = 1;
          zz[(i - 1) * m + j + 1][t] = 1;
          add_edge((i - 1) * m + j, (i - 1) * m + j + 1, x);
          add_edge((i - 1) * m + j + 1, (i - 1) * m + j, x);
        }
      }
      for (int i = 1; i < t; i++) {
        ans += z[s][i];
        ans += z[i][t];
        if (zz[s][i])
          add_edge(s, i, z[s][i]);
        if (zz[i][t])
          add_edge(i, t, z[i][t]);
      }
      for (int i = 1; i < t; i++) {
        for (int j = 1; j < t; j++) {
          if (zz[i][j]) {
            add_edge(i, j, z[i][j]);
            add_edge(j, i, z[i][j]);
          }
        }
      }
      /*  for (int i = 0; i < v; i++) {
          cout << "For " << i << ':' << endl;
          for (int j = 0; j < G[i].size(); j++) {
            edge &e = edges[G[i][j]];
            if (e.cap > 0)
              cout << "to " << e.to << " cap " << e.cap << endl;
          }
        }*/
      ans -= dinic(s, t);
      printf("%d
    ", ans >> 1);
    }
    
  • 相关阅读:
    自学Linux Shell5.2-shell内建命令history alias
    自学Linux Shell5.1-shell父子关系
    vue2.0 实现导航守卫(路由守卫)
    vue2.0 关于Vue实例的生命周期
    vue2.0 正确理解Vue.nextTick()的用途
    vue2.0 项目build后资源文件报错404的解决方案
    vue2.0 vetur插件提示 'v-for' directives require 'v-bind:key' directives 的解决办法
    vue2.0 微信oauth认证的正确调用位置
    vue2.0 样式表引入的方法 css sass less
    vue2.0 配置sass
  • 原文地址:https://www.cnblogs.com/gengchen/p/6422356.html
Copyright © 2020-2023  润新知