• GAN生成对抗网络-INFOGAN原理与基本实现-可解释的生成对抗网络-06


    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    代码

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers
    import matplotlib.pyplot as plt
    %matplotlib inline
    import numpy as np
    import glob
    
    gpu = tf.config.experimental.list_physical_devices(device_type='GPU')
    tf.config.experimental.set_memory_growth(gpu[0], True)
    
    import tensorflow.keras.datasets.mnist as mnist
    
    (train_image, train_label), (_, _) = mnist.load_data()
    

    在这里插入图片描述

    train_image = train_image / 127.5  - 1
    
    train_image = np.expand_dims(train_image, -1)
    

    在这里插入图片描述

    dataset = tf.data.Dataset.from_tensor_slices((train_image, train_label))
    

    在这里插入图片描述

    BATCH_SIZE = 256
    image_count = train_image.shape[0]
    noise_dim = 30
    con_dim = 30
    
    dataset = dataset.shuffle(image_count).batch(BATCH_SIZE)
    
    def generator_model():
        noise_seed = layers.Input(shape=((noise_dim,)))
        con_seed = layers.Input(shape=((con_dim,)))
        label = layers.Input(shape=(()))
        
        x = layers.Embedding(10, 30, input_length=1)(label)
        x = layers.Flatten()(x)
        x = layers.concatenate([noise_seed, con_seed, x])
        x = layers.Dense(3*3*128, use_bias=False)(x)
        x = layers.Reshape((3, 3, 128))(x)
        x = layers.BatchNormalization()(x)
        x = layers.ReLU()(x)
        
        x = layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.ReLU()(x)     #  7*7
    
        x = layers.Conv2DTranspose(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.ReLU()(x)    #   14*14
    
        x = layers.Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.Activation('tanh')(x)
        
        model = tf.keras.Model(inputs=[noise_seed, con_seed, label], outputs=x)  
        
        return model
    
    def discriminator_model():
        image = tf.keras.Input(shape=((28,28,1)))
        
        x = layers.Conv2D(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(image)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Conv2D(32*2, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Conv2D(32*4, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Flatten()(x)
        x1 = layers.Dense(1)(x)
        x2 = layers.Dense(10)(x)
        x3 = layers.Dense(con_dim, activation='sigmoid')(x)
        
        model = tf.keras.Model(inputs=image, outputs=[x1, x2, x3])
        
        return model
    
    generator = generator_model()
    
    discriminator = discriminator_model()
    
    binary_cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
    category_cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    
    def discriminator_loss(real_output, real_cat_out, fake_output, label, con_out, cond_in):
        real_loss = binary_cross_entropy(tf.ones_like(real_output), real_output)
        fake_loss = binary_cross_entropy(tf.zeros_like(fake_output), fake_output)
        cat_loss = category_cross_entropy(label, real_cat_out)
        con_loss = tf.reduce_mean(tf.square(con_out - cond_in))
        total_loss = real_loss + fake_loss + cat_loss + con_loss
        return total_loss
    
    def generator_loss(fake_output, fake_cat_out, label, con_out, cond_in):
        fake_loss = binary_cross_entropy(tf.ones_like(fake_output), fake_output)
        cat_loss = category_cross_entropy(label, fake_cat_out)
        con_loss = tf.reduce_mean(tf.square(con_out - cond_in))
        return fake_loss + cat_loss + con_loss
    
    generator_optimizer = tf.keras.optimizers.Adam(1e-5)
    discriminator_optimizer = tf.keras.optimizers.Adam(1e-5)
    
    @tf.function
    def train_step(images, labels):
        batchsize = labels.shape[0]
        noise = tf.random.normal([batchsize, noise_dim])
        cond = tf.random.uniform([batchsize, noise_dim])
        
        with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
            generated_images = generator((noise, cond, labels), training=True)
    
            real_output, real_cat_out, _ = discriminator(images, training=True)
            fake_output, fake_cat_out, con_out = discriminator(generated_images, training=True)
            
            gen_loss = generator_loss(fake_output, fake_cat_out, labels, con_out, cond)
            disc_loss = discriminator_loss(real_output, real_cat_out, fake_output, labels, 
                                           con_out, cond)
    
        gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
        gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
    
        generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
        discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
    
    num = 10
    noise_seed = tf.random.normal([num, noise_dim])
    cat_seed = np.random.randint(0, 10, size=(num, 1))
    print(cat_seed.T)
    

    在这里插入图片描述

    def generate_and_save_images(model, test_noise_input, test_cat_input, epoch):
        print('Epoch:', epoch+1)
      # Notice `training` is set to False.
      # This is so all layers run in inference mode (batchnorm).
        cond_seed = tf.random.uniform([num, con_dim])
        predictions = model((test_noise_input, cond_seed, test_cat_input), training=False)
        predictions = tf.squeeze(predictions)
        fig = plt.figure(figsize=(10, 1))
    
        for i in range(predictions.shape[0]):
            plt.subplot(1, 10, i+1)
            plt.imshow((predictions[i, :, :] + 1)/2, cmap='gray')
            plt.axis('off')
    
    #    plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
        plt.show()
    
    def train(dataset, epochs):
        for epoch in range(epochs):
            for image_batch, label_batch in dataset:
                train_step(image_batch, label_batch)
            if epoch%10 == 0:
                generate_and_save_images(generator,
                                         noise_seed,
                                         cat_seed,
                                         epoch)
    
    
        generate_and_save_images(generator,
                                noise_seed,
                                cat_seed,
                                epoch)
    
    EPOCHS = 200
    
    train(dataset, EPOCHS)
    

    在这里插入图片描述
    在这里插入图片描述

    generator.save('generate_infogan.h5')
    
    num = 10
    noise_seed = tf.random.normal([num, noise_dim])
    cat_seed = np.arange(10).reshape(-1, 1)
    print(cat_seed.T)
    

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 相关阅读:
    VC编译器
    位域
    位域2
    函数调用时刻的堆栈情况
    字节对齐2
    Python学习笔记(6)while循环、while嵌套
    Python学习笔记(7)字符串Str
    Python学习笔记(3)输出、输入、输出输入综合小练习
    Python学习笔记(1)Python介绍、解释器、第一个python程序、注释
    Python学习笔记(4)运算符、运算符小练习
  • 原文地址:https://www.cnblogs.com/gemoumou/p/14186248.html
Copyright © 2020-2023  润新知