迭代
你可以创建一个列表,然后逐一遍历,这就是迭代
1
2
3
4
5
6
|
>>> mylist = [1, 2, 3]
>>> for i in mylist:
... print(i)
1
2
3
|
mylist是可迭代的对象,当你使用列表解析时,你创建一个列表,即一个可迭代对象
1
2
3
4
5
6
|
>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
... print(i)
0
1
4
|
任何你可用 “for… in…” 处理的都是可迭代对象:列表,字符串,文件….
这些迭代对象非常便捷,因为你可以尽可能多地获取你想要的东西
但,当你有大量数据并把所有值放到内存时,这种处理方式可能不总是你想要的
(but you store all the values in memory and it’s not always what you want when you have a lot of values.)
生成器
生成器是迭代器,但你只能遍历它一次(iterate over them once)
因为生成器并没有将所有值放入内存中,而是实时地生成这些值
1
2
3
4
5
6
|
>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
... print(i)
0
1
4
|
这和使用列表解析地唯一区别在于使用()替代了原来的[]
注意,你不能执行for i in mygenerator第二次,因为每个生成器只能被使用一次: 计算0,并不保留结果和状态,接着计算1,然后计算4,逐一生成
yield
yield是一个关键词,类似return, 不同之处在于,yield返回的是一个生成器
1
2
3
4
5
6
7
8
9
10
11
12
13
|
>>> def createGenerator():
... mylist = range(3)
... for i in mylist:
... yield i*i
...
>>> mygenerator = createGenerator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
>>> for i in mygenerator:
... print(i)
0
1
4
|
这个例子并没有什么实际作用,仅说明当你知道你的函数将产生大量仅被读取一次的数据时,使用生成器将是十分有效的做法
要掌握yield,你必须明白 – 当你调用这个函数,函数中你书写的代码并没有执行。这个函数仅仅返回一个生成器对象
这有些狡猾 :-)
然后,在每次for循环使用生成器时,都会执行你的代码
然后,是比较困难的部分:
第一次函数将会从头运行,直到遇到yield,然后将返回循环的首个值. 然后,每次调用,都会执行函数中的循环一次,返回下一个值,直到没有值可以返回
当循环结束,或者不满足”if/else”条件,导致函数运行但不命中yield关键字,此时生成器被认为是空的