• CTR预估模型发展历程(转)


    转自:https://zhuanlan.zhihu.com/p/104307718

    背景

    在推荐、搜索、广告等领域,CTR(click-through rate)预估是一项非常核心的技术,这里引用阿里妈妈资深算法专家朱小强大佬的一句话:“它(CTR预估)是镶嵌在互联网技术上的明珠”。

    本篇文章主要是对CTR预估中的常见模型进行梳理与总结,并分成模块进行概述。每个模型都会从「模型结构」、「优势」、「不足」三个方面进行探讨,在最后对所有模型之间的关系进行比较与总结。本篇文章讨论的模型如下图所示(原创图),这个图中展示了本篇文章所要讲述的算法以及之间的关系,在文章的最后总结会对这张图进行详细地说明。

    目录

    本篇文章将会按照整个CTR预估模型的演进过程进行组织,共分为7个大部分:

    • 分布式线性模型
      • Logistic Regression
    • 自动化特征工程
      • GBDT+LR
    • FM模型以及变体
      • FM(Factorization Machines)
      • FFM(Field-aware Factorization Machines)
      • AFM(Attentional Factorization Machines)
    • Embedding+MLP结构下的浅层改造
      • FNN(Factorization Machine supported Neural Network)
      • PNN(Product-based Neural Network)
      • NFM(Neural Factorization Machines)
      • ONN(Operation-aware Neural Networks)
    • 双路并行的模型组合
      • wide&deep(Wide and Deep)
      • deepFM(Deep Factorization Machines)
    • 复杂的显式特征交叉网络
      • DCN(Deep and Cross Network)
      • xDeepFM(Compressed Interaction Network)
      • AutoInt(Automatic Feature Interaction Learning)
    • CTR预估模型总结与比较
      • CTR预估模型关系图谱
      • CTR预估模型特性对比

    更多详细内容请查看原网站:

    CTR预估模型发展过程与关系图谱

  • 相关阅读:
    屏幕适配的简单介绍
    静态单元格
    BOOL的getter方法
    取消注册监听器
    自定义cell
    假适配
    cell的重用
    UITableView的简单使用
    UISrcoll控件简单介绍
    创建ios界面的三步骤
  • 原文地址:https://www.cnblogs.com/gczr/p/14367674.html
Copyright © 2020-2023  润新知