• 【图像算法】彩色图像切割专题八:基于MeanShift的彩色切割


    》原理曾经的博客中已经有对meanshift原理的解释,这里就不啰嗦了。国外的资料看这http://people.csail.mit.edu/sparis/#cvpr07

    》源代码

    核心代码(參考网络)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    //============================Meanshift==============================//
    void MyClustering::MeanShiftImg(IplImage * src , IplImage * dst , float r , int Nmin ,int Ncon )
    {
        int i , j , p ,k=0,run_meanshift_slec_number=0;
        int pNmin;                              //mean shift产生的特征的搜索框内的特征数
        IplImage * temp , * gray;                       //转换到Luv空间的图像
        CvMat * distance , * result , *mask;                //
        CvMat * temp_mat ,*temp_mat_sub ,*temp_mat_sub2 ,* final_class_mat;         //Luv空间的图像到矩阵,图像矩阵与随机选择点之差。
        CvMat * cn ,* cn1 , * cn2 , * cn3;
        double /*covar_img[3] ,*/ avg_img[3];       //图像的协方差主对角线上的元素和,各个通道的均值
        double r1;          //搜索半径
        int temp_number;
        meanshiftpoint meanpoint[25];       //存储随机产生的25点
        CvScalar    cvscalar1,cvscalar2;
        int order[25];
        Feature feature[100];           //特征
        double  shiftor;
        CvMemStorage * storage=NULL;
        CvSeq * seq=0 , * temp_seq=0 , *prev_seq;
    //---------------------------------------------RGB to Luv空间,初始化----------------------------------------------
        temp            =   cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U, src->nChannels);
        gray            =   cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U, 1);
        temp_mat        =   cvCreateMat(src->height,src->width,CV_8UC3);
        final_class_mat =   cvCreateMat(src->height,src->width,CV_8UC3);
        mask            =   cvCloneMat(temp_mat);
        temp_mat_sub    =   cvCreateMat(src->height,src->width,CV_32FC3);
        temp_mat_sub2   =   cvCreateMat(src->height,src->width,CV_32FC3);
        cvZero(temp);
        cvCvtColor(src,temp,CV_RGB2Luv);                    //RGB to Luv空间
        distance        =   cvCreateMat(src->height,src->width,CV_32FC1);
        result          =   cvCreateMat(src->height,src->width,CV_8UC1);
        cvConvert(temp,temp_mat);                           //IplImage to Mat
        cn  =   cvCreateMat(src->height,src->width,CV_32FC1);
        cn1 =   cvCloneMat(cn);
        cn2 =   cvCloneMat(cn);
        cn3 =   cvCloneMat(cn);
        storage = cvCreateMemStorage(0);
    //-------------------------------------------计算搜索窗体半径 r --------------------------------------------
        if(r!=NULL)
            r1=r;
        else
        {
            cvscalar1   =   cvSum(temp_mat);
            avg_img[0]  =   cvscalar1.val[0]/(src->width * src->height);
            avg_img[1]  =   cvscalar1.val[1]/(src->width * src->height);
            avg_img[2]  =   cvscalar1.val[2]/(src->width * src->height);
            cvscalar1   =   cvScalar(avg_img[0],avg_img[1],avg_img[2],NULL);
            cvScale(temp_mat,temp_mat_sub,1.0,0.0);
            cvSubS(temp_mat_sub , cvscalar1 , temp_mat_sub ,NULL);
            cvMul(temp_mat_sub , temp_mat_sub , temp_mat_sub2);
            cvscalar1   =   cvSum(temp_mat_sub2);
            r1          =   0.4*cvSqrt( (cvscalar1.val[0] + cvscalar1.val[1] + cvscalar1.val[2])/(src->width * src->height));;
        }
        //初始化随机数生成种子
        srand((unsigned)time(NULL));
         
    //--------------------循环,使用meanshift进行特征空间分析。终止条件是Nmin--------------------------------------
        do
        {
    //--------------------------------------------初始化搜索窗体位置-------------------------------------------
            run_meanshift_slec_number++;
            cvSet(distance,cvScalar(r1*r1,NULL,NULL,NULL),NULL);
            for( i = 0 ; i < 25 ; i++)
            {
                meanpoint[i].pt.x = rand()%src->width;
                meanpoint[i].pt.y = rand()%src->height;
            }
            cvScale(temp_mat,temp_mat_sub,1.0,0.0);
            for( i = 0 ; i < 25 ; i++)
            {
                /*cvSubS(temp_mat_sub ,cvScalar(cvGetReal3D(temp_mat,meanpoint[i].pt.x,meanpoint[i].pt.y,0),
                    cvGetReal3D(temp_mat,meanpoint[i].pt.x,meanpoint[i].pt.y,1),
                    cvGetReal3D(temp_mat,meanpoint[i].pt.x,meanpoint[i].pt.y,2),
                    NULL),temp_mat_sub,NULL);*/
                cvSplit(temp_mat_sub,cn,cn1,cn2,NULL);
                cvSubS(temp_mat_sub,cvScalar(cvmGet(cn,meanpoint[i].pt.y,meanpoint[i].pt.x),
                    cvmGet(cn1,meanpoint[i].pt.y,meanpoint[i].pt.x),
                    cvmGet(cn2,meanpoint[i].pt.y,meanpoint[i].pt.x),NULL),temp_mat_sub,NULL);
                cvMul(temp_mat_sub,temp_mat_sub,temp_mat_sub2,1);
                cvSplit(temp_mat_sub2,cn,cn1,cn2,NULL);
                cvAdd(cn,cn1,cn3,NULL);
                cvAdd(cn2,cn3,cn3,NULL);            //cn3中存放着,当前随机点与空间中其他点距离的平方。
                cvCmp(cn3,distance,result,CV_CMP_LE);       //距离小于搜索半径则result对应位为1
                cvAndS(result,cvScalar(1,NULL,NULL,NULL),result,NULL);
                cvscalar1   =   cvSum(result);
                meanpoint[i].con_f_number = (int)cvscalar1.val[0];
            }
            for(i = 0 ; i < 25 ; i++)
            {
                order[i]=i;
            }
            for(i = 0 ; i < 25 ; i++)
                for(j = 0 ; j < 25-i-1; j++)
                {
                    if(meanpoint[order[j]].con_f_number < meanpoint[order[j+1]].con_f_number)
                    {
                        temp_number=order[j];
                        order[j]=order[j+1];
                        order[j+1]=temp_number;
                    }
                }
    //--------------------------------------------meanshift算法------------------------------------------------  
            double  temp_mean[3];
     
            for( i = 0 ; i < 25 ; i++)
            {
                cvScale(temp_mat,temp_mat_sub,1.0,0.0);
                cvSplit(temp_mat_sub,cn,cn1,cn2,NULL);
                temp_mean[0]    =   cvmGet(cn  , meanpoint[order[i]].pt.y , meanpoint[order[i]].pt.x);
                temp_mean[1]    =   cvmGet(cn1 , meanpoint[order[j]].pt.y , meanpoint[order[i]].pt.x);
                temp_mean[2]    =   cvmGet(cn2 , meanpoint[order[j]].pt.y , meanpoint[order[i]].pt.x);
     
                //meanshift过程
                do
                {
                    //计算出在搜索窗体内的特征点,而且生成相应的模板,即相应的点置一的矩阵表示相应的点在搜索框内
                    cvScale(temp_mat,temp_mat_sub,1.0,0.0);
                    cvSubS(temp_mat_sub,cvScalar(temp_mean[0],temp_mean[1],temp_mean[2],NULL),temp_mat_sub,NULL);
                    cvMul(temp_mat_sub,temp_mat_sub,temp_mat_sub2,1);
                    cvSplit(temp_mat_sub2 , cn , cn1 , cn2 , NULL );
                    cvAdd(cn,cn1,cn3,NULL);
                    cvAdd(cn2,cn3,cn3,NULL);            //cn3中存放着。当前随机点与空间中其他点距离的平方。
                    cvCmp(cn3,distance,result,CV_CMP_LE);       //距离小于搜索半径则result对应位为0XFF
                     
                     
                    //计算shiftor
                    cvCopy(temp_mat , final_class_mat ,NULL);               //
                    cvMerge(result , result ,result ,NULL,mask);
                    cvAnd(final_class_mat , mask ,final_class_mat ,NULL);   //与mask(3通道,0XFF)做与操作,把搜索半径外的点置零
                    cvScale(final_class_mat,temp_mat_sub,1.0,0.0);          //搜索半径内的点从8U转换成32F
     
                    cvAndS(result,cvScalar(1,NULL,NULL,NULL),result,NULL);      //对应位set 1
                    cvscalar1   =   cvSum(result);              //reslut 作为 模板 ,返回搜索窗体内的特征数
     
                    cvSubS(temp_mat_sub,cvScalar(temp_mean[0],temp_mean[1],temp_mean[2],NULL),temp_mat_sub,result);
                    cvscalar2   =   cvSum(temp_mat_sub);
                    cvscalar2.val[0] = cvscalar2.val[0]/cvscalar1.val[0] ;
                    cvscalar2.val[1] = cvscalar2.val[1]/cvscalar1.val[0] ;
                    cvscalar2.val[2] = cvscalar2.val[2]/cvscalar1.val[0] ;
                    shiftor     =   cvSqrt(pow(cvscalar2.val[0], 2) + pow(cvscalar2.val[1], 2) +    pow(cvscalar2.val[2], 2));
                    temp_mean[0]=temp_mean[0]+cvscalar2.val[0];
                    temp_mean[1]=temp_mean[1]+cvscalar2.val[1];
                    temp_mean[2]=temp_mean[2]+cvscalar2.val[2];
                    /*cvCopy(temp_mat , final_class_mat ,NULL); //
                    cvMerge(result , result ,result ,NULL,mask);
                    cvAnd(final_class_mat , mask ,final_class_mat ,NULL);   //与result做与操作,把搜索半径外的点置零
                    cvScale(final_class_mat,temp_mat_sub,1.0,0.0);          //搜索半径内的点从8U转换成32F
                    cvSplit(temp_mat_sub,cn,cn1,cn2,NULL);
                    cvSubS(cn , cvScalar(temp_mean[0],NULL,NULL,NULL),cn,result);
                    cvSubS(cn1, cvScalar(temp_mean[1],NULL,NULL,NULL),cn1,result);
                    cvSubS(cn2, cvScalar(temp_mean[2],NULL,NULL,NULL),cn2,result);
                    cvMerge(cn,cn1,cn2,NULL,temp_mat_sub);
                    cvscalar2   =   cvSum(temp_mat_sub);
                    shiftor     =   cvSqrt(pow(cvscalar2.val[0] , 2) + pow(cvscalar2.val[1] , 2) +  pow(cvscalar2.val[2] , 2));
                    temp_mean[0]=temp_mean[0]+cvscalar2.val[0];
                    temp_mean[1]=temp_mean[1]+cvscalar2.val[1];
                    temp_mean[2]=temp_mean[2]+cvscalar2.val[2];*/
                }
                while(shiftor>0.1);  //meanshift算法过程
    //--------------------------------------------去除不重要特征-----------------------------------------------
                if(k==0)
                {
                    feature[k].pt.x = temp_mean[0];
                    feature[k].pt.y = temp_mean[1];
                    feature[k].pt.z = temp_mean[2];
                    feature[k].number= (int)cvscalar1.val[0];   //由于小于等于的情况成立时。result相应位置是0XFF,不成立时相应位置为0
                    pNmin   = (int)cvscalar1.val[0];                //此特征搜索窗体内,特征空间的向量个数
                    feature[k].result=cvCreateMat(src->height,src->width,CV_8UC1);
                    cvAndS(result,cvScalar(1,NULL,NULL,NULL),result,NULL);
                    cvCopy(result,feature[k].result,NULL);
                    k++;
                }
                else
                {
                    int flag = 0;
                    for(j = 0 ; j < k ; j++)
                    {
                        if(pow(temp_mean[0]-feature[j].pt.x , 2) + pow(temp_mean[1]-feature[j].pt.y ,2) + pow(temp_mean[2]-feature[j].pt.z, 2)
                            < r1*r1)
                        {
                            flag = 1;
                            break;
                        }
                    }
                    if(flag==0)
                    {
                        feature[k].pt.x = temp_mean[0];
                        feature[k].pt.y = temp_mean[1];
                        feature[k].pt.z = temp_mean[2];
                        feature[k].number=(int)cvscalar1.val[0];
                        pNmin   = (int)cvscalar1.val[0];                //此特征搜索窗体内,特征空间的向量个数
                        feature[k].result=cvCreateMat(src->height,src->width,CV_8UC1);
                        cvCopy(result,feature[k].result,NULL);
                        k++;
                        //if(pNmin < Nmin )
                        //  break;
                    }
                }//去除不重要特征
                //if(pNmin < Nmin)
                //  break;
            }   //
     
        }while(pNmin > Nmin || run_meanshift_slec_number>60 );
     
        //------------------------------------------------后处理---------------------------------------------------------
        cvSetZero(result);
        for( i = 0 ; i < k ; i ++)
        {
            cvOr(result,feature[i].result,result,NULL);
        }
     
        cvScale(temp_mat,temp_mat_sub,1.0,0.0);
        cvSplit(temp_mat_sub,cn,cn1,cn2,NULL);
     
        for(i = 0 ; i < src->width ; i++)
            for( j = 0 ; j < src->height ; j++)
            {
                if(cvGetReal2D(result,j,i)==0)      //未分类的像素点。进行分类。为近期的特征中心
                {
                    double unclass_dis , min_dis;
                    int min_dis_index;
                    for( p = 0 ; p < k ; p++ )
                    {
                        unclass_dis = pow(feature[p].pt.x - cvmGet(cn,j,i),2)   //(temp_mat,i,j,0) ,2)
                            pow(feature[p].pt.y - cvmGet(cn1,j,i),2) //(temp_mat,i,j,1) ,2)
                            pow(feature[p].pt.z - cvmGet(cn2,j,i),2);//(temp_mat,i,j,2) ,2);
                        if(p==0)
                        {
                            min_dis = unclass_dis;
                            min_dis_index = p;
                        }
                        else
                        {
                            if(unclass_dis < min_dis)
                            {
                                min_dis = unclass_dis;
                                min_dis_index = p;
                            }
                        }
                    }// end for 与特征比較
                    cvSetReal2D(feature[min_dis_index].result ,j  ,i ,1);
                }
            }//完毕未分类的像素点的分类
        cvSetZero(final_class_mat);
        for( i = 0 ; i < k ; i++)
        {
            cvSet(temp_mat, cvScalar(rand()%255,rand()%255,rand()%255,rand()%255), feature[i].result);
            cvCopy(temp_mat,final_class_mat,feature[i].result);
        }
        cvConvert(final_class_mat,dst);
        //删除小于Ncon大小的区域
        for( i = 0 ; i < k ; i++)
        {
            cvClearMemStorage(storage);
            if(seq) cvClearSeq(seq);
            cvConvert( feature[i].result , gray);
            cvFindContours( gray , storage , & seq ,sizeof(CvContour) , CV_RETR_LIST);
            for(temp_seq = seq ; temp_seq ; temp_seq = temp_seq->h_next)
            {
                CvContour * cnt = (CvContour*)seq;
                if(cnt->rect.width * cnt->rect.height < Ncon)
                {
                    prev_seq = temp_seq->h_prev;
                    if(prev_seq)
                    {
                        prev_seq->h_next = temp_seq->h_next;
                        if(temp_seq->h_next) temp_seq->h_next->h_prev = prev_seq ;
                    }
                    else
                    {
                        seq = temp_seq->h_next ;
                        if(temp_seq->h_next ) temp_seq->h_next->h_prev = NULL ;
                    }
                }
            }//
            cvDrawContours(src, seq , CV_RGB(0,0,255) ,CV_RGB(0,0,255),1);
        }
     
        //----------------释放空间-------------------------------------------------------  
        cvReleaseImage(& temp);
        cvReleaseImage(& gray);
        cvReleaseMat(&distance);
        cvReleaseMat(&result);
        cvReleaseMat(&temp_mat);
        cvReleaseMat(&temp_mat_sub);
        cvReleaseMat(&temp_mat_sub2);
        cvReleaseMat(&final_class_mat);
        cvReleaseMat(&cn);
        cvReleaseMat(&cn1);
        cvReleaseMat(&cn2);
        cvReleaseMat(&cn3);
    }

    》效果

    执行时间16.5s

    原图:

    切割图:

    被改写了的原图:

        From:         http://www.cnblogs.com/skyseraph/

    新浪微博:http://weibo.com/u/1645794700/home?

    wvr=5&c=spr_web_360_hao360_weibo_t001

    CV机器视觉2013CV机器视觉2013CV机器视觉2013

  • 相关阅读:
    阿里的面试官都喜欢问哪些问题?
    Spring AOP中的JDK和CGLib动态代理哪个效率更高?
    招聘季!送你21套经典面试题!助你一臂之力!
    Spring AOP中的JDK和CGLib动态代理哪个效率更高?
    为什么需要分布式配置中心?
    线上出故障了!我慌得一匹!教大家如何应对在线故障!
    阿里巴巴的26款超神Java开源项目!
    完了!生产事故!几百万消息在消息队列里积压了几个小时!
    十大经典排序算法(动图演示)
    用户画像学习笔记
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/5347731.html
Copyright © 2020-2023  润新知