• openCV中cvSnakeImage()函数代码分析


    /*M///////////////////////////////////////////////////////////////////////////////////////
    //
    //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
    //
    //  By downloading, copying, installing or using the software you agree to this license.
    //  If you do not agree to this license, do not download, install,
    //  copy or use the software.
    //
    //
    //                        Intel License Agreement
    //                For Open Source Computer Vision Library
    //
    // Copyright (C) 2000, Intel Corporation, all rights reserved.
    // Third party copyrights are property of their respective owners.
    //
    // Redistribution and use in source and binary forms, with or without modification,
    // are permitted provided that the following conditions are met:
    //
    //   * Redistribution's of source code must retain the above copyright notice,
    //     this list of conditions and the following disclaimer.
    //
    //   * Redistribution's in binary form must reproduce the above copyright notice,
    //     this list of conditions and the following disclaimer in the documentation
    //     and/or other materials provided with the distribution.
    //
    //   * The name of Intel Corporation may not be used to endorse or promote products
    //     derived from this software without specific prior written permission.
    //
    // This software is provided by the copyright holders and contributors "as is" and
    // any express or implied warranties, including, but not limited to, the implied
    // warranties of merchantability and fitness for a particular purpose are disclaimed.
    // In no event shall the Intel Corporation or contributors be liable for any direct,
    // indirect, incidental, special, exemplary, or consequential damages
    // (including, but not limited to, procurement of substitute goods or services;
    // loss of use, data, or profits; or business interruption) however caused
    // and on any theory of liability, whether in contract, strict liability,
    // or tort (including negligence or otherwise) arising in any way out of
    // the use of this software, even if advised of the possibility of such damage.
    //
    //M*/
    #include "_cv.h"
     
    #define _CV_SNAKE_BIG 2.e+38f
    #define _CV_SNAKE_IMAGE 1
    #define _CV_SNAKE_GRAD  2
     
     
    /*F///////////////////////////////////////////////////////////////////////////////////////
    //    Name:      icvSnake8uC1R    
    //    Purpose:  
    //    Context:  
    //    Parameters:
    //               src - source image,
    //               srcStep - its step in bytes,
    //               roi - size of ROI,
    //               pt - pointer to snake points array
    //               n - size of points array,
    //               alpha - pointer to coefficient of continuity energy,
    //               beta - pointer to coefficient of curvature energy, 
    //               gamma - pointer to coefficient of image energy, 
    //               coeffUsage - if CV_VALUE - alpha, beta, gamma point to single value
    //                            if CV_MATAY - point to arrays
    //               criteria - termination criteria.
    //               scheme - image energy scheme
    //                         if _CV_SNAKE_IMAGE - image intensity is energy
    //                         if _CV_SNAKE_GRAD  - magnitude of gradient is energy
    //    Returns:  
    //F*/
     
    static CvStatus
    icvSnake8uC1R( unsigned char *src,   //原始图像数据
                   int srcStep,         //每行的字节数
                   CvSize roi,         //图像尺寸
                   CvPoint * pt,       //轮廓点(变形对象)
                   int n,            //轮廓点的个数
                   float *alpha,       //指向α的指针,α能够是单个值,也能够是与轮廓点个数一致的数组
                   float *beta,        //β的值,同α
                   float *gamma,       //γ的值,同α
                   int coeffUsage,   //确定αβγ是用作单个值还是个数组
            CvSize win,       //每一个点用于搜索的最小的领域大小,宽度为奇数
                 CvTermCriteria criteria,   //递归迭代终止的条件准则
    int scheme )         //确定图像能量场的数据选择,1为灰度,2为灰度梯度
    {
        int i, j, k;
        int neighbors = win.height * win.width;    //当前点领域中点的个数
     
       //当前点的位置
        int centerx = win.width >> 1;          
        int centery = win.height >> 1;         
     
        float invn;        //n 的倒数?
        int iteration = 0;     //迭代次数
        int converged = 0;      //收敛标志,0为非收敛
        
      //能量
        float *Econt;    //
        float *Ecurv;   //轮廓曲线能量
        float *Eimg;    //图像能量
        float *E;      //
      
       //αβγ的副本
        float _alpha, _beta, _gamma;
     
        /*#ifdef GRAD_SNAKE */
        float *gradient = NULL;
        uchar *map = NULL;
        int map_width = ((roi.width - 1) >> 3) + 1;
        int map_height = ((roi.height - 1) >> 3) + 1;
        CvSepFilter pX, pY;
        #define WTILE_SIZE 8
        #define TILE_SIZE (WTILE_SIZE + 2)       
        short dx[TILE_SIZE*TILE_SIZE], dy[TILE_SIZE*TILE_SIZE];
        CvMat _dx = cvMat( TILE_SIZE, TILE_SIZE, CV_16SC1, dx );
        CvMat _dy = cvMat( TILE_SIZE, TILE_SIZE, CV_16SC1, dy );
        CvMat _src = cvMat( roi.height, roi.width, CV_8UC1, src );
     
        /* inner buffer of convolution process */
        //char ConvBuffer[400];
     
        /*#endif */
     
         //检点參数的合理性
        /* check bad arguments */
        if( src == NULL )
            return CV_NULLPTR_ERR;
        if( (roi.height <= 0) || (roi.width <= 0) )
            return CV_BADSIZE_ERR;
        if( srcStep < roi.width )
            return CV_BADSIZE_ERR;
        if( pt == NULL )
            return CV_NULLPTR_ERR;
        if( n < 3 )                         //轮廓点至少要三个
            return CV_BADSIZE_ERR;
        if( alpha == NULL )
            return CV_NULLPTR_ERR;
        if( beta == NULL )
            return CV_NULLPTR_ERR;
        if( gamma == NULL )
            return CV_NULLPTR_ERR;
        if( coeffUsage != CV_VALUE && coeffUsage != CV_ARRAY )
            return CV_BADFLAG_ERR;
        if( (win.height <= 0) || (!(win.height & 1)))   //邻域搜索窗体得是奇数
            return CV_BADSIZE_ERR;
        if( (win.width <= 0) || (!(win.width & 1)))
            return CV_BADSIZE_ERR;
     
        invn = 1 / ((float) n);        //轮廓点数n的倒数,用于求平均?
     
        if( scheme == _CV_SNAKE_GRAD )
    {
         //X方向上和Y方向上的Scoble梯度算子,用于求图像的梯度,
    //处理的图像最大尺寸为TILE_SIZE+2,此例为12,算子半长为3即{-3,-2,-1,0,1,2,3}
    //处理后的数据类型为16位符号数,分别存放在_dx,_dy矩阵中,长度为10
            pX.init_deriv( TILE_SIZE+2, CV_8UC1, CV_16SC1, 1, 0, 3 );
            pY.init_deriv( TILE_SIZE+2, CV_8UC1, CV_16SC1, 0, 1, 3 );
           //图像梯度存放缓冲区
            gradient = (float *) cvAlloc( roi.height * roi.width * sizeof( float ));
     
            if( !gradient )
                return CV_OUTOFMEM_ERR;
           //map用于标志对应位置的分块的图像能量是否已经求得
            map = (uchar *) cvAlloc( map_width * map_height );
            if( !map )
            {
                cvFree( &gradient );
                return CV_OUTOFMEM_ERR;
            }
            /* clear map - no gradient computed */
           //清除map标志
            memset( (void *) map, 0, map_width * map_height );
    }
    //各种能量的存放处,取每点的邻域的能量
        Econt = (float *) cvAlloc( neighbors * sizeof( float ));
        Ecurv = (float *) cvAlloc( neighbors * sizeof( float ));
        Eimg = (float *) cvAlloc( neighbors * sizeof( float ));
        E = (float *) cvAlloc( neighbors * sizeof( float ));
       //開始迭代
        while( !converged )    //收敛标志无效时进行
        {
            float ave_d = 0;  //轮廓各点的平均距离
            int moved = 0;      //轮廓变形时,发生移动的数量
     
            converged = 0;       //标志未收敛
            iteration++;        //更新迭代次数+1
     
    //计算轮廓中各点的平均距离
            /* compute average distance */
          //从点0到点n-1的距离和
            for( i = 1; i < n; i++ )
            {
                int diffx = pt[i - 1].x - pt[i].x;
                int diffy = pt[i - 1].y - pt[i].y;
     
                ave_d += cvSqrt( (float) (diffx * diffx + diffy * diffy) ); 
            }
         //再加上从点n-1到点0的距离,形成回路轮廓
            ave_d += cvSqrt( (float) ((pt[0].x - pt[n - 1].x) *
                                      (pt[0].x - pt[n - 1].x) +
                                      (pt[0].y - pt[n - 1].y) * (pt[0].y - pt[n - 1].y)));
        //求平均,得出平均距离
            ave_d *= invn;
            /* average distance computed */
     
     
          //对于每一个轮廓点进行特定循环迭代求解
            for( i = 0; i < n; i++ )
            {
                /* Calculate Econt */
              //初始化各个能量
                float maxEcont = 0;
                float maxEcurv = 0;
                float maxEimg = 0;
                float minEcont = _CV_SNAKE_BIG;
                float minEcurv = _CV_SNAKE_BIG;
                float minEimg = _CV_SNAKE_BIG;
                float Emin = _CV_SNAKE_BIG;
             //初始化变形后轮廓点的偏移量
                int offsetx = 0;
                int offsety = 0;
                float tmp;
     
            //计算边界
                /* compute bounds */
               //计算合理的搜索边界,以防领域搜索超过ROI图像的范围
                int left = MIN( pt[i].x, win.width >> 1 );
                int right = MIN( roi.width - 1 - pt[i].x, win.width >> 1 );
                int upper = MIN( pt[i].y, win.height >> 1 );
                int bottom = MIN( roi.height - 1 - pt[i].y, win.height >> 1 );
              //初始化Econt
                maxEcont = 0;
                minEcont = _CV_SNAKE_BIG;
             //在合理的搜索范围内进行Econt的计算
                for( j = -upper; j <= bottom; j++ )
                {
                    for( k = -left; k <= right; k++ )
                    {
                        int diffx, diffy;
                        float energy;
                 //在轮廓点集的首尾相接处作对应处理,求轮廓点差分
                        if( i == 0 )
                        {
                            diffx = pt[n - 1].x - (pt[i].x + k);
                            diffy = pt[n - 1].y - (pt[i].y + j);
                        }
                        else
                 //在其它地方作一般处理
     
                        {
                            diffx = pt[i - 1].x - (pt[i].x + k);
                            diffy = pt[i - 1].y - (pt[i].y + j);
                        }
                 //将邻域陈列坐标转成Econt数组的下标序号,计算邻域中每点的Econt
                  //Econt的值等于平均距离和此点和上一点的距离的差的绝对值(这是怎么来的?)
                        Econt[(j + centery) * win.width + k + centerx] = energy =
                            (float) fabs( ave_d -
                                          cvSqrt( (float) (diffx * diffx + diffy * diffy) ));
                 //求出全部邻域点中的Econt的最大值和最小值
                        maxEcont = MAX( maxEcont, energy );
                        minEcont = MIN( minEcont, energy );
                    }
                }
               //求出邻域点中最大值和最小值之差,并对全部的邻域点的Econt进行标准归一化,若最大值最小
               //相等,则邻域中的点Econt全相等,Econt归一化束缚为0
                tmp = maxEcont - minEcont;
                tmp = (tmp == 0) ? 0 : (1 / tmp);
                for( k = 0; k < neighbors; k++ )
                {
                    Econt[k] = (Econt[k] - minEcont) * tmp;
                }
     
     
               //计算每点的Ecurv
                /*  Calculate Ecurv */
                maxEcurv = 0;
                minEcurv = _CV_SNAKE_BIG;
                for( j = -upper; j <= bottom; j++ )
                {
                    for( k = -left; k <= right; k++ )
                    {
                        int tx, ty;
                        float energy;
                        //第一个点的二阶差分
                        if( i == 0 )
                        {
                            tx = pt[n - 1].x - 2 * (pt[i].x + k) + pt[i + 1].x;
                            ty = pt[n - 1].y - 2 * (pt[i].y + j) + pt[i + 1].y;
                        }
                       //最后一个点的二阶差分
                        else if( i == n - 1 )
                        {
                            tx = pt[i - 1].x - 2 * (pt[i].x + k) + pt[0].x;
                            ty = pt[i - 1].y - 2 * (pt[i].y + j) + pt[0].y;
                        }
                       //其余点的二阶差分
                        else
                        {
                            tx = pt[i - 1].x - 2 * (pt[i].x + k) + pt[i + 1].x;
                            ty = pt[i - 1].y - 2 * (pt[i].y + j) + pt[i + 1].y;
                        }
                      //转换坐标为数组序号,并求各点的Ecurv的值,二阶差分后取平方
                        Ecurv[(j + centery) * win.width + k + centerx] = energy =
                            (float) (tx * tx + ty * ty);
                      //取最小的Ecurv和最大的Ecurv
                        maxEcurv = MAX( maxEcurv, energy );
                        minEcurv = MIN( minEcurv, energy );
                    }
                }
                   //对Ecurv进行标准归一化
                tmp = maxEcurv - minEcurv;
                tmp = (tmp == 0) ? 0 : (1 / tmp);
                for( k = 0; k < neighbors; k++ )
                {
                    Ecurv[k] = (Ecurv[k] - minEcurv) * tmp;
                }
             
               //求Eimg
                /* Calculate Eimg */
                for( j = -upper; j <= bottom; j++ )
                {
                    for( k = -left; k <= right; k++ )
                    {
                        float energy;
                   //若採用灰度梯度数据
                        if( scheme == _CV_SNAKE_GRAD )
                        {
                            /* look at map and check status */
                            int x = (pt[i].x + k)/WTILE_SIZE;
                            int y = (pt[i].y + j)/WTILE_SIZE;
                            //若此处的图像能量还没有获取,则对此处对应的图像分块进行图像能量的求解
                            if( map[y * map_width + x] == 0 )
                            {
                                int l, m;                           
     
                                /* evaluate block location */
                               //计算要进行梯度算子处理的图像块的位置
                                int upshift = y ? 1 : 0;
                                int leftshift = x ? 1 : 0;
                                int bottomshift = MIN( 1, roi.height - (y + 1)*WTILE_SIZE );
                                int rightshift = MIN( 1, roi.width - (x + 1)*WTILE_SIZE );
                              //图像块的位置大小(因为原ROI不一定是8的倍数,所以图像块会大小不一)
                                CvRect g_roi = { x*WTILE_SIZE - leftshift, y*WTILE_SIZE - upshift,
                                    leftshift + WTILE_SIZE + rightshift, upshift + WTILE_SIZE + bottomshift };
                                CvMat _src1;
                                cvGetSubArr( &_src, &_src1, g_roi );  //得到图像块的数据
                                //分别对图像的X方向和Y方向进行梯度算子
                                pX.process( &_src1, &_dx );
                                pY.process( &_src1, &_dy );
                             //求分块区域中的每一个点的梯度
                                for( l = 0; l < WTILE_SIZE + bottomshift; l++ )
                                {
                                    for( m = 0; m < WTILE_SIZE + rightshift; m++ )
                                    {
                                        gradient[(y*WTILE_SIZE + l) * roi.width + x*WTILE_SIZE + m] =
                                            (float) (dx[(l + upshift) * TILE_SIZE + m + leftshift] *
                                                     dx[(l + upshift) * TILE_SIZE + m + leftshift] +
                                                     dy[(l + upshift) * TILE_SIZE + m + leftshift] *
                                                     dy[(l + upshift) * TILE_SIZE + m + leftshift]);
                                    }
                                }
                                //map对应位置置1表示此处图像能量已经获取
                                map[y * map_width + x] = 1;
                            }
                          //以梯度数据作为图像能量
                            Eimg[(j + centery) * win.width + k + centerx] = energy =
                                gradient[(pt[i].y + j) * roi.width + pt[i].x + k];
                        }
                        else
                        {
                           //以灰度作为图像能量
                            Eimg[(j + centery) * win.width + k + centerx] = energy =
                                src[(pt[i].y + j) * srcStep + pt[i].x + k];
                        }
                       //获得邻域中最大和最小的图像能量
                        maxEimg = MAX( maxEimg, energy );
                        minEimg = MIN( minEimg, energy );
                    }
                }
                  //Eimg的标准归一化
                tmp = (maxEimg - minEimg);
                tmp = (tmp == 0) ? 0 : (1 / tmp);
     
                for( k = 0; k < neighbors; k++ )
                {
                    Eimg[k] = (minEimg - Eimg[k]) * tmp;
                }
                //增加系数
                /* locate coefficients */
                if( coeffUsage == CV_VALUE)
                {
                    _alpha = *alpha;
                    _beta = *beta;
                    _gamma = *gamma;
                }
                else
                {                  
                    _alpha = alpha[i];
                    _beta = beta[i];
                    _gamma = gamma[i];
                }
     
                /* Find Minimize point in the neighbors */
                //求得每一个邻域点的Snake能量
                for( k = 0; k < neighbors; k++ )
                {
                    E[k] = _alpha * Econt[k] + _beta * Ecurv[k] + _gamma * Eimg[k];
                }
                Emin = _CV_SNAKE_BIG;
            //获取最小的能量,以及对应的邻域中的相对位置
                for( j = -upper; j <= bottom; j++ )
                {
                    for( k = -left; k <= right; k++ )
                    {
     
                        if( E[(j + centery) * win.width + k + centerx] < Emin )
                        {
                            Emin = E[(j + centery) * win.width + k + centerx];
                            offsetx = k;
                            offsety = j;
                        }
                    }
                }
             //假设轮廓点发生改变,则记得移动次数
                if( offsetx || offsety )
                {
                    pt[i].x += offsetx;
                    pt[i].y += offsety;
                    moved++;
                }
            }
     
          //各个轮廓点迭代计算完毕后,假设没有移动的点了,则收敛标志位有效,停止迭代
            converged = (moved == 0);
         //达到最大迭代次数时,收敛标志位有效,停止迭代
            if( (criteria.type & CV_TERMCRIT_ITER) && (iteration >= criteria.max_iter) )
                converged = 1;
      //到大对应精度时,停止迭代(与第一个条件有同样效果)
            if( (criteria.type & CV_TERMCRIT_EPS) && (moved <= criteria.epsilon) )
                converged = 1;
        }
     
      //释放各个缓冲区
        cvFree( &Econt );
        cvFree( &Ecurv );
        cvFree( &Eimg );
        cvFree( &E );
     
        if( scheme == _CV_SNAKE_GRAD )
        {
            cvFree( &gradient );
            cvFree( &map );
        }
        return CV_OK;
    }
     
     
    CV_IMPL void
    cvSnakeImage( const IplImage* src, CvPoint* points,
                  int length, float *alpha,
                  float *beta, float *gamma,
                  int coeffUsage, CvSize win,
                  CvTermCriteria criteria, int calcGradient )
    {
     
        CV_FUNCNAME( "cvSnakeImage" );
     
        __BEGIN__;
     
        uchar *data;
        CvSize size;
        int step;
     
        if( src->nChannels != 1 )
            CV_ERROR( CV_BadNumChannels, "input image has more than one channel" );
     
        if( src->depth != IPL_DEPTH_8U )
            CV_ERROR( CV_BadDepth, cvUnsupportedFormat );
     
        cvGetRawData( src, &data, &step, &size );
     
        IPPI_CALL( icvSnake8uC1R( data, step, size, points, length,
                                  alpha, beta, gamma, coeffUsage, win, criteria,
                                  calcGradient ? _CV_SNAKE_GRAD : _CV_SNAKE_IMAGE ));
        __END__;
    }
     
    /* end of file */
     
     
     
     
     
    測试应用程序
     
    #include "stdafx.h"
    #include <iostream>
    #include <string.h>
    #include <cxcore.h>
    #include <cv.h>
    #include <highgui.h>
    #include <fstream>
     
     
    IplImage *image = 0 ; //原始图像
    IplImage *image2 = 0 ; //原始图像copy
     
    using namespace std;
    int Thresholdness = 141;
    int ialpha = 20;
    int ibeta=20;
    int igamma=20;
     
    void onChange(int pos)
    {
       
        if(image2) cvReleaseImage(&image2);
        if(image) cvReleaseImage(&image);
     
        image2 = cvLoadImage("grey.bmp",1); //显示图片
        image= cvLoadImage("grey.bmp",0);
     
        cvThreshold(image,image,Thresholdness,255,CV_THRESH_BINARY); //切割域值   
     
        CvMemStorage* storage = cvCreateMemStorage(0);
        CvSeq* contours = 0;
     
        cvFindContours( image, storage, &contours, sizeof(CvContour), //寻找初始化轮廓
            CV_RETR_EXTERNAL , CV_CHAIN_APPROX_SIMPLE );
     
        if(!contours) return ;
        int length = contours->total;   
        if(length<10) return ;
        CvPoint* point = new CvPoint[length]; //分配轮廓点
     
        CvSeqReader reader;
        CvPoint pt= cvPoint(0,0);;   
        CvSeq *contour2=contours;   
     
        cvStartReadSeq(contour2, &reader);
        for (int i = 0; i < length; i++)
        {
            CV_READ_SEQ_ELEM(pt, reader);
            point[i]=pt;
        }
        cvReleaseMemStorage(&storage);
     
        //显示轮廓曲线
        for(int i=0;i<length;i++)
        {
            int j = (i+1)%length;
            cvLine( image2, point[i],point[j],CV_RGB( 0, 0, 255 ),1,8,0 );
        }
     
        float alpha=ialpha/100.0f;
        float beta=ibeta/100.0f;
        float gamma=igamma/100.0f;
     
        CvSize size;
        size.width=3;
        size.height=3;
        CvTermCriteria criteria;
        criteria.type=CV_TERMCRIT_ITER;
        criteria.max_iter=1000;
        criteria.epsilon=0.1;
        cvSnakeImage( image, point,length,&alpha,&beta,&gamma,CV_VALUE,size,criteria,0 );
     
        //显示曲线
        for(int i=0;i<length;i++)
        {
            int j = (i+1)%length;
            cvLine( image2, point[i],point[j],CV_RGB( 0, 255, 0 ),1,8,0 );
        }
        delete []point;
     
    }
     
    int main(int argc, char* argv[])
    {
     
       
        cvNamedWindow("win1",0);
        cvCreateTrackbar("Thd", "win1", &Thresholdness, 255, onChange);
        cvCreateTrackbar("alpha", "win1", &ialpha, 100, onChange);
        cvCreateTrackbar("beta", "win1", &ibeta, 100, onChange);
        cvCreateTrackbar("gamma", "win1", &igamma, 100, onChange);
        cvResizeWindow("win1",300,500);
        onChange(0);
     
        for(;;)
        {
            if(cvWaitKey(40)==27) break;
            cvShowImage("win1",image2);
        }
       
        return 0;
    }




    转:http://shi-xj.blog.163.com/blog/static/3178051520110911234254/

  • 相关阅读:
    svn命令
    samba配置
    查看登录用户who
    facl笔记
    计算100以内所有奇数的和以及所有偶数的和;分别显示之
    计算100以内所有能被3整除的正整数的和
    特殊权限:SUID,SGID,Sticky
    vi命令笔记
    nginx、fastCGI、php-fpm关系梳理(转载参考)
    Nginx + CGI/FastCGI + C/Cpp
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4230114.html
Copyright © 2020-2023  润新知