http://acm.hdu.edu.cn/showproblem.php?pid=4291
凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙:
g(g(g(n))) mod 109 + 7 最外层MOD=1e9+7 能够算出g(g(n))的循环节222222224。进而算出g(n)的循环节183120LL。然后由内而外计算就可以
凝视掉的是求循环节的代码
//#pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <iostream> #include <iomanip> #include <cmath> #include <map> #include <set> #include <queue> using namespace std; #define ls(rt) rt*2 #define rs(rt) rt*2+1 #define ll long long #define ull unsigned long long #define rep(i,s,e) for(int i=s;i<e;i++) #define repe(i,s,e) for(int i=s;i<=e;i++) #define CL(a,b) memset(a,b,sizeof(a)) #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const ll ll_INF = ((ull)(-1))>>1; const double EPS = 1e-8; const double pi = acos(-1.0); const int INF = 100000000; const ll MOD[3] = {183120LL,222222224LL,1000000007LL}; const int N = 2; struct Matrix{ ll m[N][N]; //int sz;//矩阵的大小 }; Matrix I= {3LL,1LL,//要幂乘的矩阵 1LL,0LL, }; Matrix unin={1LL,0LL,//单位矩阵 0LL,1LL, }; Matrix matrixmul(Matrix a,Matrix b,long long mod)//矩阵a乘矩阵b { Matrix c; for(int i=0; i<N; i++) for(int j=0; j<N; j++) { c.m[i][j]=0LL; for(int k=0; k<N; k++) c.m[i][j]+=(a.m[i][k]*b.m[k][j])%mod; c.m[i][j]%=mod; } return c; } Matrix quickpow(long long n,long long mod) { Matrix m=I,b=unin;//求矩阵I的n阶矩阵 while(n>=1) { if(n&1) b=matrixmul(b,m,mod); n=n>>1; m=matrixmul(m,m,mod); } return b; } ll solve(ll n) { ll ans; Matrix ret; ret.m[0][0]=n; for(int i=0;i<3;i++) { if(ret.m[0][0]!=0 && ret.m[0][0]!=1)ret=quickpow(ret.m[0][0]-1,MOD[i]); } return ret.m[0][0]; } int main() { //precal(); ll n; while(~scanf("%I64d",&n)) { if(n==0){puts("0");continue;} if(n==1){puts("1");continue;} //printf("%I64d ",solve(n)); cout << solve(n)%1000000007LL << endl; } return 0; }
hdu 4291 矩阵幂 循环节