• HashMap(1.8)源码阅读


    先了解一下用到的位运算符:https://www.cnblogs.com/gavinYang/p/11196492.html

    一、初始化

    1.无参构造函数:

    //负载因子默认值
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    //指定loadFactor负载因子的值是0.75f
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    2.指定初始化大小和负载因子:

    //hashmap的最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30; //1左移30位等于1073741824
    
    //initialCapacity:传入的hashmap初始化大小
    //loadFactor:负载因子,此时是默认值0.75f
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
        //如果大于最大容量,则初始化的值为最大容量的值
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
    
    
    //返回一个大于等于initialCapacity的2的n次方最近的一个值
    //假设传入的initialCapacity=5
    static final int tableSizeFor(int cap) {
        int n = cap - 1;  //4
        n |= n >>> 1; // 00000100 |= 00000010 得出 00000110=6
        n |= n >>> 2; // 00000110 |= 00000011 得出 00000111=7
        n |= n >>> 4; // 00000111 |= 00000000 得出 00000111=7
        n |= n >>> 8; // 00000111 |= 00000000 得出 00000111=7
        n |= n >>> 16;// 00000111 |= 00000000 得出 00000111=7
        //最终返回n+1=8
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    3.指定初始化大小(会调用2)

    //initialCapacity:hashmap初始化大小
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    二、put元素(转红黑树和put一个TreeNode时待补充)

    //插入元素
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
    //计算hash值
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    //hashmap的数组
    transient Node<K,V>[] table;
    
    //存放数据
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //把table赋值给tab,判断tab是否为空(第一次put时执行)
        if ((tab = table) == null || (n = tab.length) == 0)
            //返回数组的长度
            n = (tab = resize()).length;
        //计算一个位置(& 运算后值肯定小于 n-1),如果数组的这个位置不为空则直接放入数据
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //数组不为空,且计算的位置以及有数据
        else {
            Node<K,V> e; K k;
            //添加的数据与所在的数组的位置的hash值和key相同,则将当前数组位置的数据数据p赋值给e
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果数组当前位置的值是TreeNode类型。。。。。。。    
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //死循环,binCount表示链表长度
                for (int binCount = 0; ; ++binCount) {
                    //判断当前数组位置是否有下一个值
                    if ((e = p.next) == null) {
                        //数组位置的下一个值是当前新插入的数据(插入尾部)
                        p.next = newNode(hash, key, value, null);
                        //链表长度大于TREEIFY_THRESHOLD=8时转化为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) 
                            treeifyBin(tab, hash);
                        break;
                    }
                    //添加的数据与如果下一个值的hash值和key相同,直接跳出
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    //下一个位置的数据赋值给p,循环继续    
                    p = e;
                }
            }
            //key存在,更新新值,返回旧值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //判断是否超过需要的大小
        if (++size > threshold)
            resize();    
        afterNodeInsertion(evict);
        return null;
    }
    
    
    
    //初始化或扩容时调用
    final Node<K,V>[] resize() {
        //将原有的数据存放到oldTab
        Node<K,V>[] oldTab = table;
        //旧数组的容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //需要扩容的大小
        int oldThr = threshold;
        //新的容量,新的需要扩容的大小
        int newCap, newThr = 0;
        //旧数组有数据
        if (oldCap > 0) {
            //旧数组容量大于等于最大容量1 << 30 = 1073741824
            if (oldCap >= MAXIMUM_CAPACITY) {
                //不扩容返回旧数组
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //新的容量是旧数组的容量左移以为即:oldCap*2。如果数组容量大于DEFAULT_INITIAL_CAPACITY=16时,扩容的容量也要×2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //旧数组为空,进行初始化
        else if (oldThr > 0) // 初始化容量设置为threshold(需要扩容的值)
            newCap = oldThr;
        else { 
            //无参初始化hashmap时,容量和扩容的大小
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //新的threshold(需要扩容的大小)为零时,newThr=newCap * loadFactor
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //赋值回threshold
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        //定义一个新hashmap的数组,值是新的容量
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        //旧数组不为空,扩容
        if (oldTab != null) {
            //遍历旧的数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //数组当前位置下没有链表
                    if (e.next == null)
                        //重新计算hash然后放入新数组的新位置
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { 
                        //数组位置下有链表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //e.hash & oldCap 返回0或者oldCap
                            //如果链表中各节点(e.hash & oldCap)计算值不一样时数据会分布在数组的旧位置和(旧位置+oldCap)
                            if ((e.hash & oldCap) == 0) {
                                //第一次遍历时,loHead等于当前链表
                                //loTail每循环一次去掉链表头部    
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;    
                                loTail = e;
                            }
                            else {
                                //第一次遍历时,hiHead等于当前链表
                                //hiTail每循环一次去掉链表头部    
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //将当前数组位置下的链表(hiHead/loHead)放到新数组的(当前数组位置+oldCap)位置
                        //loTail/hiTail.next设置为空为了防止loTail和loHead(或hiHead和hiTail)指向同一个地址时数据重复,
                        //重复时则清除loHead和hiHead的next值
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

     三、get元素

    //返回键对应的值
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    
    //计算hash值
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    
    //根据key获得对应的node
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //数组不等于空,要获取的元素的位置不等于空
        if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
            //第一个元素即是要查找的元素
            if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //获取链表的下一个,准备开始遍历链表
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //遍历链表            
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    、remove元素

    //返回键对应的值
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
    //计算hash值
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    
    //value:如果是matchValue则需要传入
    //matchValue:如果等于true则还需要匹配值也相等
    //movable:如果为false则在删除时不要移动其他节点
    final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //数组不等于空,要获取的元素的数组位置不等于空
        if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //如果数组当前位置p即是对应的值
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            //获取链表的下一个,准备开始遍历链表
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                //遍历链表
                else {
                    do {
                        if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //找到元素,并且matchValue=false或者找到的node的value与指定value相等
            if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                //如果节点在数组上,则直接将数组的位置指定为p的下一个位置
                else if (node == p)
                    tab[index] = node.next;
                //如果节点在链表上,则将当前节点的下一个值指定为找到的节点的下一个值    
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
  • 相关阅读:
    JAVAEE网上商城项目总结
    色盲小游戏
    jQuery(动画效果)
    Oracle exp,imp,expdp,impdp数据导入导出
    Sysbench压力测试工具简介和使用(二)
    Sysbench压力测试工具简介和使用(一)
    Eclipse常用快捷键汇总
    常用数据库连接URL地址大全
    H2数据库使用
    DbVisualizer 解决中文乱码问题
  • 原文地址:https://www.cnblogs.com/gavinYang/p/11768289.html
Copyright © 2020-2023  润新知