• storm笔记:Storm+Kafka简单应用


    storm笔记:Storm+Kafka简单应用

    这几天工作须要使用storm+kafka,基本场景是应用出现错误,发送日志到kafka的某个topic。storm订阅该topic。然后进行兴许处理。场景很easy,可是在学习过程中。遇到一个奇怪的异常情况:使用KafkaSpout读取topic数据时,没有向ZK写offset数据,致使每次都从头開始读取。

    纠结了两天,最终碰巧找到原因:应该使用BaseBasicBolt作为bolt的父类。而不是BaseRichBolt

    通过本文记录一下这样的情况,后文中依据上述场景提供几个简单的样例。

    由于是初学storm、kafka,基础理论查看storm笔记:storm基本概念,。或查看Storm 简单介绍


    基本订阅

    基本场景:订阅kafka的某个topic,然后在读取的消息前加上自己定义的字符串,然后写回到kafka另外一个topic。

    从Kafka读取数据的Spout使用storm.kafka.KafkaSpout。向Kafka写数据的Bolt使用storm.kafka.bolt.KafkaBolt

    中间进行进行数据处理的Bolt定义为TopicMsgBolt。闲言少叙。奉上代码:

    
    public class TopicMsgTopology {
        public static void main(String[] args) throws Exception {
            // 配置Zookeeper地址
            BrokerHosts brokerHosts = new ZkHosts("zk1:2181,zk2:2281,zk3:2381");
            // 配置Kafka订阅的Topic。以及zookeeper中数据节点文件夹和名字
            SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, "msgTopic1", "/topology/root", "topicMsgTopology");
            // 配置KafkaBolt中的kafka.broker.properties
            Config conf = new Config();
            Properties props = new Properties();
            // 配置Kafka broker地址
            props.put("metadata.broker.list", "dev2_55.wfj-search:9092");
            // serializer.class为消息的序列化类
            props.put("serializer.class", "kafka.serializer.StringEncoder");
            conf.put("kafka.broker.properties", props);
            // 配置KafkaBolt生成的topic
            conf.put("topic", "msgTopic2");
            spoutConfig.scheme = new SchemeAsMultiScheme(new MessageScheme());
            TopologyBuilder builder = new TopologyBuilder();
            builder.setSpout("msgKafkaSpout", new KafkaSpout(spoutConfig));
            builder.setBolt("msgSentenceBolt", new TopicMsgBolt()).shuffleGrouping("msgKafkaSpout");
            builder.setBolt("msgKafkaBolt", new KafkaBolt<String, Integer>()).shuffleGrouping("msgSentenceBolt");
            if (args.length == 0) {
                String topologyName = "kafkaTopicTopology";
                LocalCluster cluster = new LocalCluster();
                cluster.submitTopology(topologyName, conf, builder.createTopology());
                Utils.sleep(100000);
                cluster.killTopology(topologyName);
                cluster.shutdown();
            } else {
                conf.setNumWorkers(1);
                StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
            }
        }
    }

    storm.kafka.ZkHosts构造方法的參数是zookeeper标准配置地址的形式(ZooKeeper环境搭建能够查看ZooKeeper安装部署),zk1、zk2、zk3在本地配置了host。由于server使用的伪分布式模式,因此几个端口号不是默认的2181。

    storm.kafka.SpoutConfig构造方法第一个參数为上述的storm.kafka.ZkHosts对象。第二个为待订阅的topic名称,第三个參数zkRoot为写读取topic时的偏移量offset数据的节点(zk node),第四个參数为该节点上的次级节点名(有个地方说这个是spout的id)。

    backtype.storm.Config对象是配置storm的topology(拓扑)所须要的基础配置。

    backtype.storm.spout.SchemeAsMultiScheme的构造方法输入的參数是订阅kafka数据的处理參数,这里的MessageScheme是自己定义的,代码例如以下:

    public class MessageScheme implements Scheme {
        private static final Logger logger = LoggerFactory.getLogger(MessageScheme.class);
    
        @Override
        public List<Object> deserialize(byte[] ser) {
            try {
                String msg = new String(ser, "UTF-8");
                logger.info("get one message is {}", msg);
                return new Values(msg);
            } catch (UnsupportedEncodingException ignored) {
                return null;
            }
        }
    
        @Override
        public Fields getOutputFields() {
            return new Fields("msg");
        }
    }

    MessageScheme类中getOutputFields方法是KafkaSpout向后发送tuple(storm数据传输的最小结构)的名字,须要与接收数据的Bolt中统一(在这个样例中能够不统一,由于后面直接取第0条数据。可是在wordCount的那个样例中就须要统一了)。

    TopicMsgBolt类是从storm.kafka.KafkaSpout接收数据的Bolt,对接收到的数据进行处理,然后向后传输给storm.kafka.bolt.KafkaBolt

    代码例如以下:

    public class TopicMsgBolt extends BaseBasicBolt {
        private static final Logger logger = LoggerFactory.getLogger(TopicMsgBolt.class);
    
        @Override
        public void execute(Tuple input, BasicOutputCollector collector) {
            String word = (String) input.getValue(0);
            String out = "Message got is '" + word + "'!";
            logger.info("out={}", out);
            collector.emit(new Values(out));
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("message"));
        }
    }

    此处须要特别注意的是,要使用backtype.storm.topology.base.BaseBasicBolt对象作为父类,否则不会在zk记录偏移量offset数据。

    须要编写的代码已完毕,接下来就是在搭建好的storm、kafka中进行測试:

    # 创建topic
    ./bin/kafka-topics.sh --create --zookeeper zk1:2181,zk2:2281,zk3:2381 --replication-factor 1 --partitions 1 --topic msgTopic1
    ./bin/kafka-topics.sh --create --zookeeper zk1:2181,zk2:2281,zk3:2381 --replication-factor 1 --partitions 1 --topic msgTopic2

    接下来须要分别对msgTopic1、msgTopic2启动producer(生产者)与consumer(消费者):

    # 对msgTopic1启动producer,用于发送数据
    ./bin/kafka-console-producer.sh --broker-list dev2_55.wfj-search:9092 --topic msgTopic1
    # 对msgTopic2启动consumer,用于查看发送数据的处理结果
    ./bin/kafka-console-consumer.sh --zookeeper zk1:2181,zk2:2281,zk3:2381 --topic msgTopic2 --from-beginning

    然后将打好的jar包上传到storm的nimbus(能够使用远程上传或先上传jar包到nimbus节点所在server,然后本地运行):

    # ./bin/storm jar topology TopicMsgTopology.jar cn.howardliu.demo.storm.kafka.topicMsg.TopicMsgTopology TopicMsgTopology

    待相应的worker启动好之后,就能够在msgTopic1的producer相应终端输入数据,然后在msgTopic2的consumer相应终端查看输出结果了。

    有几点须要注意的:
    1. 必须先创建msgTopic1、msgTopic2两个topic。
    2. 定义的bolt必须使用BaseBasicBolt作为父类,不能够使用BaseRichBolt。否则无法记录偏移量;
    3. zookeeper最好使用至少三个节点的分布式模式或伪分布式模式。否则会出现一些异常情况;
    4. 在整个storm下。spout、bolt的id必须唯一。否则会出现异常。


    5. TopicMsgBolt类作为storm.kafka.bolt.KafkaBolt前的最后一个Bolt。须要将输出数据名称定义为message。否则KafkaBolt无法接收数据。

    wordCount

    简单的输入输出做完了,来点复杂点儿的场景:从某个topic定于消息,然后依据空格分词,统计单词数量。然后将当前输入的单词数量推送到还有一个topic。

    首先规划须要用到的类:
    1. 从KafkaSpout接收数据并进行处理的backtype.storm.spout.Scheme子类;
    2. 数据切分bolt:SplitSentenceBolt
    3. 计数bolt:WordCountBolt
    4. 报表bolt:ReportBolt
    5. topology定义:WordCountTopology
    6. 最后再加一个原样显示订阅数据的bolt:SentenceBolt

    backtype.storm.spout.Scheme子类能够使用上面已经定义过的MessageScheme。此处不再赘述。

    SplitSentenceBolt是对输入数据进行切割。简单的使用String类的split方法,然后将每一个单词命名为“word”,向后传输,代码例如以下:

    public class SplitSentenceBolt extends BaseBasicBolt {
        @Override
        public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
            outputFieldsDeclarer.declare(new Fields("word"));
        }
    
        @Override
        public void execute(Tuple input, BasicOutputCollector collector) {
            String sentence = input.getStringByField("msg");
            String[] words = sentence.split(" ");
            Arrays.asList(words).forEach(word -> collector.emit(new Values(word)));
        }
    }

    SentenceBolt是从KafkaSpout接收数据,然后直接输出。在拓扑图上就是从输入分叉。一个进入SplitSentenceBolt。一个进入SentenceBolt。这样的结构能够应用在Lambda架构中。代码例如以下:

    public class SentenceBolt extends BaseBasicBolt {
        private static final Logger logger = LoggerFactory.getLogger(SentenceBolt.class);
    
        @Override
        public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) {
            String msg = tuple.getStringByField("msg");
            logger.info("get one message is {}", msg);
            basicOutputCollector.emit(new Values(msg));
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
            outputFieldsDeclarer.declare(new Fields("sentence"));
        }
    }

    WordCountBolt是对接收到的单词进行汇总统一,然后将单词“word”及其相应数量“count”向后传输,代码例如以下:

    public class WordCountBolt extends BaseBasicBolt {
        private Map<String, Long> counts = null;
    
        @Override
        public void prepare(Map stormConf, TopologyContext context) {
            this.counts = new ConcurrentHashMap<>();
            super.prepare(stormConf, context);
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
            outputFieldsDeclarer.declare(new Fields("word", "count"));
        }
    
        @Override
        public void execute(Tuple input, BasicOutputCollector collector) {
            String word = input.getStringByField("word");
            Long count = this.counts.get(word);
            if (count == null) {
                count = 0L;
            }
            count++;
            this.counts.put(word, count);
            collector.emit(new Values(word, count));
        }
    }

    ReportBolt是对接收到的单词及数量进行整理,拼成json格式,然后继续向后传输。代码例如以下:

    public class ReportBolt extends BaseBasicBolt {
        @Override
        public void execute(Tuple input, BasicOutputCollector collector) {
            String word = input.getStringByField("word");
            Long count = input.getLongByField("count");
            String reportMessage = "{'word': '" + word + "', 'count': '" + count + "'}";
            collector.emit(new Values(reportMessage));
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
            outputFieldsDeclarer.declare(new Fields("message"));
        }
    }

    最后是定义topology(拓扑)WordCountTopology,代码例如以下:

    public class WordCountTopology {
        private static final String KAFKA_SPOUT_ID = "kafkaSpout";
        private static final String SENTENCE_BOLT_ID = "sentenceBolt";
        private static final String SPLIT_BOLT_ID = "sentenceSplitBolt";
        private static final String WORD_COUNT_BOLT_ID = "sentenceWordCountBolt";
        private static final String REPORT_BOLT_ID = "reportBolt";
        private static final String KAFKA_BOLT_ID = "kafkabolt";
        private static final String CONSUME_TOPIC = "sentenceTopic";
        private static final String PRODUCT_TOPIC = "wordCountTopic";
        private static final String ZK_ROOT = "/topology/root";
        private static final String ZK_ID = "wordCount";
        private static final String DEFAULT_TOPOLOGY_NAME = "sentenceWordCountKafka";
    
        public static void main(String[] args) throws Exception {
            // 配置Zookeeper地址
            BrokerHosts brokerHosts = new ZkHosts("zk1:2181,zk2:2281,zk3:2381");
            // 配置Kafka订阅的Topic,以及zookeeper中数据节点文件夹和名字
            SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, CONSUME_TOPIC, ZK_ROOT, ZK_ID);
            spoutConfig.scheme = new SchemeAsMultiScheme(new MessageScheme());
    
            TopologyBuilder builder = new TopologyBuilder();
            builder.setSpout(KAFKA_SPOUT_ID, new KafkaSpout(spoutConfig));
            builder.setBolt(SENTENCE_BOLT_ID, new SentenceBolt()).shuffleGrouping(KAFKA_SPOUT_ID);
            builder.setBolt(SPLIT_BOLT_ID, new SplitSentenceBolt()).shuffleGrouping(KAFKA_SPOUT_ID);
            builder.setBolt(WORD_COUNT_BOLT_ID, new WordCountBolt()).fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));
            builder.setBolt(REPORT_BOLT_ID, new ReportBolt()).shuffleGrouping(WORD_COUNT_BOLT_ID);
            builder.setBolt(KAFKA_BOLT_ID, new KafkaBolt<String, Long>()).shuffleGrouping(REPORT_BOLT_ID);
    
            Config config = new Config();
            Map<String, String> map = new HashMap<>();
            map.put("metadata.broker.list", "dev2_55.wfj-search:9092");// 配置Kafka broker地址
            map.put("serializer.class", "kafka.serializer.StringEncoder");// serializer.class为消息的序列化类
            config.put("kafka.broker.properties", map);// 配置KafkaBolt中的kafka.broker.properties
            config.put("topic", PRODUCT_TOPIC);// 配置KafkaBolt生成的topic
    
            if (args.length == 0) {
                LocalCluster cluster = new LocalCluster();
                cluster.submitTopology(DEFAULT_TOPOLOGY_NAME, config, builder.createTopology());
                Utils.sleep(100000);
                cluster.killTopology(DEFAULT_TOPOLOGY_NAME);
                cluster.shutdown();
            } else {
                config.setNumWorkers(1);
                StormSubmitter.submitTopology(args[0], config, builder.createTopology());
            }
        }
    }

    除了上面提过应该注意的地方。此处还须要注意。storm.kafka.SpoutConfig定义的zkRoot与id应该与第一个样例中不同(至少保证id不同,否则两个topology将使用一个节点记录偏移量)。

  • 相关阅读:
    Python 文件批量改名
    解决 unity 生成 android apk read Resources
    IIS 重定向 自动追加 eurl.axd 后缀
    多线程
    zookeeper面试
    线程之间的通信(thread signal)
    软考高项之计算题成本类计算
    PowerDesigner PDM 复制comment到name
    软考高项之计算题进度类
    全面理解Java内存模型
  • 原文地址:https://www.cnblogs.com/gavanwanggw/p/7252163.html
Copyright © 2020-2023  润新知