链接:http://poj.org/problem?id=3070
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
9
999999999
1000000000
-1
34
626
6875
Stanford Local 2006
大意——给你一个求解Fibonacci数列的公式。问:给出一个数n,要你用这个公式计算出F(n)的后四位。
Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10796 Accepted: 7678
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
09
999999999
1000000000
-1
Sample Output
034
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Stanford Local 2006
大意——给你一个求解Fibonacci数列的公式。问:给出一个数n,要你用这个公式计算出F(n)的后四位。
思路——题目已经告诉我们用矩阵连乘求Fibonacci数,问题是n非常大。假设直接矩阵乘n-1次,肯定TLE。因此我们能够用二分求高速幂:
复杂度分析——时间复杂度:O(n),空间复杂度:O(1)
附上AC代码:
#include <iostream> #include <cstdio> #include <string> #include <cmath> #include <iomanip> #include <ctime> #include <climits> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; typedef unsigned int UI; typedef long long LL; typedef unsigned long long ULL; typedef long double LD; const double PI = 3.14159265; const double E = 2.71828182846; const int MOD = 10000; struct matrix { int mat[2][2]; } res, base; // 定义一个结构体封装矩阵 matrix mul(matrix a, matrix b); // 矩阵乘法运算 int fast_mod(int x); // 二分求高速幂 // a^n = (a^(n/2))^2 当n为偶数 // a^n = a*(a^(n/2))^2 当n为奇数 int main() { ios::sync_with_stdio(false); int num; while (cin >> num && num != -1) { cout << fast_mod(num) << endl; } return 0; } matrix mul(matrix a, matrix b) { matrix temp; for (int i=0; i<2; ++i) for (int j=0; j<2; ++j) { temp.mat[i][j] = 0; for (int k=0; k<2; ++k) temp.mat[i][j] = (temp.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MOD; } return temp; } int fast_mod(int x) { base.mat[0][0]=base.mat[0][1]=base.mat[1][0]=1; base.mat[1][1]=0; // 原始矩阵 res.mat[0][0]=res.mat[1][1]=1; res.mat[0][1]=res.mat[1][0]=0; // 单位矩阵 while (x) { if (x & 1) // 相当于模2 { res = mul(res, base); } base = mul(base, base); x >>= 1; // 相当于除2 } return res.mat[0][1]; }