• Longest Palindromic Substring(最长回文子串)


    题目描述:

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

      这是一道很有名的题目,相信很多人面试的时候会被问到。

      本人算法能力一般,题目看完毫无头绪。苦思冥想大半天,才想到用动态规划。代码写的很丑,就不贴了。结果一提交,系统提示Time Limit Exceeded

    这说明算法复杂度太高。我又抓耳挠腮大半天,想到了中心扩展法。提交通过,很是开心。

    中心扩展法:

    string longestPalindrome(string s) {
        int len = s.size();
        if(len < 2)
            return s;
        int maxlen = 1;
        int start = 0;
        int low,high;
        for (int i = 1;i < len;++i)
        {
            low = i - 1;
            high = i;
            while (low >= 0 && high < len && s[low] == s[high])
            {
                --low;
                ++high;
            }
            if (high - low - 1 > maxlen)
            {
                maxlen = high - low - 1;
                start = low + 1;
            }
            low = i - 1;
            high = i + 1;
            while (low >= 0 && high < len && s[low] == s[high])
            {
                --low;
                ++high;
            }
            if (high - low - 1 > maxlen)
            {
                maxlen = high - low - 1;
                start = low + 1;
            }
        }
        return string(s,start,maxlen);
    }

      走到这一步已经很不容易,上网一搜,发现还存在一个更牛的解法,如下:

    Manacher's algorithm

    string preProcess(const string &s)
    {
        int n = s.size();
        string res = "$";
        for (int i = 0;i < n;++i)
        {
            res += "#";
            res += s[i];
        }
        res += "#^";
        return res;
    }
    
    string longestPalindrome(string s){
        if(s.size() < 2)
            return s;
        string str = preProcess(s);
        int n = str.size();
        int *p = new int[n];
        int id = 0, mx = 0;
        for (int i = 1;i < n-1;++i)
        {
            p[i] = mx > i ? min(p[2*id-i], mx-i) : 1;
            while(str[i+p[i]] == str[i-p[i]])
                ++p[i];
            if (i + p[i] > mx)
            {
                mx = i + p[i];
                id = i;
            }
        }
    
        int maxlen = 0, index = 0;
        for (int i = 1;i < n-1;++i)
        {
            if (p[i] > maxlen)
            {
                maxlen = p[i];
                index = i;
            }
        }
        delete [] p;
        return string(s,(index - maxlen)/2,maxlen-1);
    }

      这里引用别人的一段话:

          This algorithm is definitely non-trivial and you won’t be expected to come up with such algorithm during an interview setting.

          But, please go ahead and understand it, I promise it will be a lot of fun.

          想了解原理的可以参考这篇文章http://www.cnblogs.com/tenosdoit/p/3675788.html

  • 相关阅读:
    Windows2012下安装和配置Oracle BIEE12c
    Windows Oracle 12安装教程
    SpringCloud学习之Ribbon使用(四)
    SpringCloud学习之手把手教你用IDEA搭建入门项目(三)
    SpringCloud学习之手把手教你用IDEA搭建入门项目(二)
    SpringCloud学习之手把手教你用IDEA搭建入门项目(一)
    SpringCloud学习之手把手教你用IDEA搭建入门项目【番外篇】(一)
    SpringCloud学习之大纲总略(大纲篇)
    Websocket @serverendpoint 404
    XMLHttpRequest status为0
  • 原文地址:https://www.cnblogs.com/gattaca/p/4169515.html
Copyright © 2020-2023  润新知