• Django框架 之 querySet详解


    浏览目录

    QuerySet

    可切片

    使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

    >>> Entry.objects.all()[:5]      # (LIMIT 5)
    
    Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)
    

    不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。   

    可迭代

    articleList=models.Article.objects.all()
    
    for article in articleList:
        print(article.title)  

    惰性查询

    查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

    queryResult=models.Article.objects.all() # not hits database
     
    print(queryResult) # hits database
     
    for article in queryResult:
        print(article.title)    # hits database
    

     一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集  

    缓存机制

    每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

    在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

    请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

    print([a.title for a in models.Article.objects.all()])
    print([a.create_time for a in models.Article.objects.all()])
    

    这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它: 

    queryResult=models.Article.objects.all()
    print([a.title for a in queryResult])
    print([a.create_time for a in queryResult])
    

    何时查询集不会被缓存?

    查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

    例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

    >>> queryset = Entry.objects.all()
    >>> print queryset[5] # Queries the database
    >>> print queryset[5] # Queries the database again
    

    然而,如果已经对全部查询集求值过,则将检查缓存:  

    >>> queryset = Entry.objects.all()
    >>> [entry for entry in queryset] # Queries the database
    >>> print queryset[5] # Uses cache
    >>> print queryset[5] # Uses cache
    

    下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

    >>> [entry for entry in queryset]
    >>> bool(queryset)
    >>> entry in queryset
    >>> list(queryset)
    

    注:简单地打印查询集不会填充缓存。  

    queryResult=models.Article.objects.all()
    print(queryResult) #  hits database
    print(queryResult) #  hits database 

    exists()与iterator()方法

    exists:

    简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

    if queryResult.exists():
        #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
            print("exists...")
    

    iterator:

    当queryset非常巨大时,cache会成为问题。

    处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

    objs = Book.objects.all().iterator()
    # iterator()可以一次只从数据库获取少量数据,这样可以节省内存
    for obj in objs:
        print(obj.title)
    #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
    for obj in objs:
        print(obj.title)
    

    当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

    总结:

    queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

      

      

  • 相关阅读:
    目标检测
    模型压缩-L1-norm based channel pruning(Pruning Filters for Efficient ConvNets)
    ubuntu docker 环境安装
    姿态估计的数据集说明
    详解Pytorch中的网络构造,模型save和load,.pth权重文件解析
    MSE, MAE, Huber loss详解
    maskrcnn_benchmark 理解
    模型压缩-Learning Efficient Convolutional Networks through Network Slimming
    Focal Loss
    Github桌面版使用教程
  • 原文地址:https://www.cnblogs.com/gaoya666/p/9005753.html
Copyright © 2020-2023  润新知