• 线程


    并发编程---线程

    一、操作系统线程理论

    1、线程概念的引入背景

           之前我们已经了解了进程,就是执行的程序就称之为进程,进程的出现使得用户感觉到自己在独享CPU,因此进程就是为了在CPU上实现多道编程而提出的;那么既然已经有了进程,那么为什么还会出现线程呢?进程可以让每个人都拥有自己的CPU和其他资源,可以提高计算机的利用率,但是它有两点主要缺陷:

    • 进程只能在同一时刻干一件事,如果在同一时刻同时处理多件事,进程就无能为力了
    • 进程在执行的过程中如果出现阻塞,整个进程就会挂起,即使进程中有些工作不依赖于输入的数据,也将无法继续执行所以,由于进程是资源拥有者,创建、撤消与切换存在较大的时空开销,需要引入轻型进程;二是由于对称多处理机(SMP)出现,可以满足多个运行单位,而多个进程并行开销过大。因此在80年代出现了能够独立运行的基本单位线程
    • 进程是资源分配的最小单位,线程是CPU调度的最小单位;每一个进程中至少有一个线程。

    2、进程和线程的关系(区别)

    • 地址空间和其他资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。
    • 通信:线程间可以直接读写进程数据段(如全局变量)来进行通信;而进程间通信IPC,需要进程同步和互斥手段的辅助,以保证数据的一致性。
    • 调度和切换:线程上下文切换比进程上下文切换要快得多,因为不用重新加载地址空间等一系列资源
    • 在多线程操作系统中,进程不是一个可执行的实体

    3、线程的特点

    在多线程的操作系统中,通常是在一个进程中包括多个线程,每个线程都是作为利用CPU的基本单位,是花费最小开销的实体。线程具有以下属性。
      1)轻型实体
      线程中的实体基本上不拥有系统资源,只是有一点必不可少的、能保证独立运行的资源。
      线程的实体包括程序、数据和TCB。线程是动态概念,它的动态特性由线程控制块TCB(Thread Control Block)描述。
       TCB包括以下信息
    (1)线程状态。
    (2)当线程不运行时,被保存的现场资源。
    (3)一组执行堆栈。
    (4)存放每个线程的局部变量主存区。
    (5)访问同一个进程中的主存和其它资源。
    用于指示被执行指令序列的程序计数器、保留局部变量、少数状态参数和返回地址等的一组寄存器和堆栈。
            2)独立调度和分派的基本单位。
      在多线程OS中,线程是能独立运行的基本单位,因而也是独立调度和分派的基本单位。由于线程很“轻”,故线程的切换非常迅速且开销小(在同一进程中的)。
      3)共享进程资源。
      线程在同一进程中的各个线程,都可以共享该进程所拥有的资源,这首先表现在:所有线程都具有相同的进程id,这意味着,线程可以访问该进程的每一个内存资源;此外,还可以访问进程所拥有的已打开文件、定时器、信号量机构等。由于同一个进程内的线程共享内存和文件,所以线程之间互相通信不必调用内核。

            4)可并发执行。

      在一个进程中的多个线程之间,可以并发执行,甚至允许在一个进程中所有线程都能并发执行;同样,不同进程中的线程也能并发执行,充分利用和发挥了处理机与外围设备并行工作的能力。

    4、使用线程的实际场景

            开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。

    5、内存中的线程

            多个线程共享同一个进程的地址空间中的资源,是对一台计算机上多个进程的模拟,有时也称线程为轻量级的进程。

      而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。

      不同的进程之间是充满敌意的,彼此是抢占、竞争cpu的关系,如果迅雷会和QQ抢资源。而同一个进程是由一个程序员的程序创建,所以同一进程内的线程是合作关系,一个线程可以访问另外一个线程的内存地址,大家都是共享的,一个线程干死了另外一个线程的内存,那纯属程序员脑子有问题。

      类似于进程,每个线程也有自己的堆栈,不同于进程,线程库无法利用时钟中断强制线程让出CPU,可以调用thread_yield运行线程自动放弃cpu,让另外一个线程运行。

      线程通常是有益的,但是带来了不小程序设计难度,线程的问题是:

      1. 父进程有多个线程,那么开启的子线程是否需要同样多的线程

      2. 在同一个进程中,如果一个线程关闭了文件,而另外一个线程正准备往该文件内写内容呢?

      因此,在多线程的代码中,需要更多的心思来设计程序的逻辑、保护程序的数据。

     二、线程理论知识和threading模块

    1、理论知识

    1.1、全局解释器锁GIL

           Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。
      对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。

      在多线程环境中,Python 虚拟机按以下方式执行:

      a、设置 GIL;

      b、切换到一个线程去运行;

      c、运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0));

      d、把线程设置为睡眠状态;

      e、解锁 GIL;

      d、再次重复以上所有步骤。
      在调用外部代码(如 C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有Python的字节码被运行,所以不会做线程切换)编写扩展的程序员可以主动解锁GIL。

     1.2、python线程模块的选择

            Python提供了几个用于多线程编程的模块,包括thread、threading和Queue等。thread和threading模块允许程序员创建和管理线程。thread模块提供了基本的线程和锁的支持,threading提供了更高级别、功能更强的线程管理的功能。Queue模块允许用户创建一个可以用于多个线程之间共享数据的队列数据结构。
      避免使用thread模块,因为更高级别的threading模块更为先进,对线程的支持更为完善,而且使用thread模块里的属性有可能会与threading出现冲突;其次低级别的thread模块的同步原语很少(实际上只有一个),而threading模块则有很多;再者,thread模块中当主线程结束时,所有的线程都会被强制结束掉,没有警告也不会有正常的清除工作,至少threading模块能确保重要的子线程退出后进程才退出。 

      thread模块不支持守护线程,当主线程退出时,所有的子线程不论它们是否还在工作,都会被强行退出。而threading模块支持守护线程,守护线程一般是一个等待客户请求的服务器,如果没有客户提出请求它就在那等着,如果设定一个线程为守护线程,就表示这个线程是不重要的,在进程退出的时候,不用等待这个线程退出。

    2、线程创建threading.Thread

    2.1、Thread模块语法简介 

    Process([group [, target [, name [, args [, kwargs]]]]])

    线程参数:

    group参数未使用,值始终为None 
    target表示调用对象,即子进程要执行的任务 
    args表示调用对象的位置参数元组,args=(1,2,’yang’,) 
    kwargs表示调用对象的字典,kwargs={‘name’:’yang’,’age’:18} 
    name为子进程的名称

    Thread实例对象的方法

    isAlive(): 返回线程是否活动的 
    getName(): 返回线程名 
    setName(): 设置线程名

    threading模块提供的一些方法:

    threading.currentThread(): 返回当前的线程变量 
    threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程 
    threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果
    from threading import Thread
    import threading
    from multiprocessing import Process
    import os
    
    def work():
        import time
        time.sleep(3)
        print(threading.current_thread().getName())
    
    
    if __name__ == '__main__':
        #在主进程下开启线程
        t=Thread(target=work)
        t.start()
    
        print(threading.current_thread().getName())
        print(threading.current_thread()) #主线程
        print(threading.enumerate()) #连同主线程在内有两个运行的线程
        print(threading.active_count())
        print('主线程/主进程')
    
        '''
        打印结果:
        MainThread
        <_MainThread(MainThread, started 140735268892672)>
        [<_MainThread(MainThread, started 140735268892672)>, <Thread(Thread-1, started 123145307557888)>]
        主线程/主进程
        Thread-1
        '''
    示例
    from threading import Thread
    import time
    def sayhi(name):
        time.sleep(2)
        print('%s say hello' %name)
    
    if __name__ == '__main__':
        t=Thread(target=sayhi,args=('egon',))
        t.start()
        t.join()
        print('主线程')
        print(t.is_alive())
        '''
        egon say hello
        主线程
        False
        '''
    join方法

    2.2、守护线程

    无论是进程还是线程,都遵循:守护xx会等待主xx运行完毕后被销毁。需要强调的是:运行完毕并非终止运行

    • 对主进程来说,运行完毕指的是主进程代码运行完毕
    • 对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕
    • 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束,
    • 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。
    from threading import Thread
    import time
    def sayhi(name):
        time.sleep(2)
        print('%s say hello' %name)
    
    if __name__ == '__main__':
        t=Thread(target=sayhi,args=('egon',))
        t.setDaemon(True) #必须在t.start()之前设置
        t.start()
    
        print('主线程')
        print(t.is_alive())
        '''
        主线程
        True
        '''
    守护线程示例1
    from threading import Thread
    import time
    def foo():
        print(123)
        time.sleep(1)
        print("end123")
    
    def bar():
        print(456)
        time.sleep(3)
        print("end456")
    
    
    t1=Thread(target=foo)
    t2=Thread(target=bar)
    
    t1.daemon=True
    t1.start()
    t2.start()
    print("main-------")
    守护线程示例2

    2.3、创建子线程

    import time
    import random
    from threading import Thread
    
    def hello(name):
        time.sleep(random.random())
        print('{} say hello'.format(name))
    
    if __name__ == '__main__':
        t = Thread(target=hello, args=('python',))
        t.start()
        print('Main Thread...')
    实例化对象方式
    import time
    import random
    from threading import Thread
    
    class hello(Thread):
        def __init__(self, name):
            super().__init__()
            self.name = name
    
        def run(self):
            time.sleep(random.random())
            print('{} say hello'.format(self.name))
    
    if __name__ == '__main__':
        t = hello('Python')
        t.start()
        print('Main Thread...')
    继承类方式

    2.4、多进程&多线程对比

    # 多进程与多线程——pid的比较
    from threading import Thread
    from multiprocessing import Process
    import os
    
    
    def work(name):
        print('{} 的进程ID:{}'.format(name, os.getpid()))
    
    
    if __name__ == '__main__':
        # part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样
        t1 = Thread(target=work, args=('多线程',))
        t2 = Thread(target=work, args=('多线程',))
        t1.start()
        t2.start()
    
        # part2:开多个进程,每个进程都有不同的pid
        p1 = Process(target=work, args=('多进程',))
        p2 = Process(target=work, args=('多进程',))
        p1.start()
        p2.start()
    
    # 多进程与多线程——开启效率的比较
    from threading import Thread
    from multiprocessing import Process
    
    def work():
        print('hello')
    
    if __name__ == '__main__':
        # 在主进程下开启线程
        t = Thread(target=work)
        t.start()
        print('主线程/主进程')
        '''
        打印结果:
        hello
        主线程/主进程
        '''
    
        # 在主进程下开启子进程
        t = Process(target=work)
        t.start()
        print('主线程/主进程')
        '''
        打印结果:
        主线程/主进程
        hello
        '''
    
    # 内存数据的共享问题
    from  threading import Thread
    from multiprocessing import Process
    import os
    
    def work():
        global n
        n = 0
    
    if __name__ == '__main__':
        n = 100
        p = Process(target=work)
        p.start()
        p.join()
        print('Main...', n)  # 子进程p已经将自己的全局的n改成了0,但改的仅仅是它自己的,查看父进程的n仍然为100
    
        # n = 1
        # t = Thread(target=work)
        # t.start()
        # t.join()
        # print('Main...', n)  # 查看结果为0,因为同一进程内的线程之间共享进程内的数据,线程已经把值改成0了
    对比

    3、锁  threading.Lock

    3.1、锁与GLL

    3.2、同步锁

    from threading import Thread
    import os,time
    def work():
        global n
        temp=n
        time.sleep(0.1)
        n=temp-1
    if __name__ == '__main__':
        n=100
        l=[]
        for i in range(100):
            p=Thread(target=work)
            l.append(p)
            p.start()
        for p in l:
            p.join()
    
        print(n) #结果可能为99
    多个线程抢占资源的情况
    import threading
    R=threading.Lock()
    R.acquire()
    '''
    对公共数据的操作
    '''
    R.release()
    from threading import Thread,Lock
    import os,time
    def work():
        global n
        lock.acquire()
        temp=n
        time.sleep(0.1)
        n=temp-1
        lock.release()
    if __name__ == '__main__':
        lock=Lock()
        n=100
        l=[]
        for i in range(100):
            p=Thread(target=work)
            l.append(p)
            p.start()
        for p in l:
            p.join()
    
        print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全
    同步锁的引用
    #不加锁:并发执行,速度快,数据不安全
    from threading import current_thread,Thread,Lock
    import os,time
    def task():
        global n
        print('%s is running' %current_thread().getName())
        temp=n
        time.sleep(0.5)
        n=temp-1
    
    
    if __name__ == '__main__':
        n=100
        lock=Lock()
        threads=[]
        start_time=time.time()
        for i in range(100):
            t=Thread(target=task)
            threads.append(t)
            t.start()
        for t in threads:
            t.join()
    
        stop_time=time.time()
        print('主:%s n:%s' %(stop_time-start_time,n))
    
    '''
    Thread-1 is running
    Thread-2 is running
    ......
    Thread-100 is running
    主:0.5216062068939209 n:99
    '''
    
    
    #不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
    from threading import current_thread,Thread,Lock
    import os,time
    def task():
        #未加锁的代码并发运行
        time.sleep(3)
        print('%s start to run' %current_thread().getName())
        global n
        #加锁的代码串行运行
        lock.acquire()
        temp=n
        time.sleep(0.5)
        n=temp-1
        lock.release()
    
    if __name__ == '__main__':
        n=100
        lock=Lock()
        threads=[]
        start_time=time.time()
        for i in range(100):
            t=Thread(target=task)
            threads.append(t)
            t.start()
        for t in threads:
            t.join()
        stop_time=time.time()
        print('主:%s n:%s' %(stop_time-start_time,n))
    
    '''
    Thread-1 is running
    Thread-2 is running
    ......
    Thread-100 is running
    主:53.294203758239746 n:0
    '''
    
    #有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
    #没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
    #start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
    #单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
    from threading import current_thread,Thread,Lock
    import os,time
    def task():
        time.sleep(3)
        print('%s start to run' %current_thread().getName())
        global n
        temp=n
        time.sleep(0.5)
        n=temp-1
    
    
    if __name__ == '__main__':
        n=100
        lock=Lock()
        start_time=time.time()
        for i in range(100):
            t=Thread(target=task)
            t.start()
            t.join()
        stop_time=time.time()
        print('主:%s n:%s' %(stop_time-start_time,n))
    
    '''
    Thread-1 start to run
    Thread-2 start to run
    ......
    Thread-100 start to run
    主:350.6937336921692 n:0 #耗时是多么的恐怖
    '''
    互斥锁与join的区别

    3.3、死锁与递归锁

    所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。

    from threading import Lock as Lock
    import time
    mutexA=Lock()
    mutexA.acquire()
    mutexA.acquire()
    print(123)
    mutexA.release()
    mutexA.release()
    死锁

    解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

    这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

    from threading import RLock as Lock
    import time
    mutexA=Lock()
    mutexA.acquire()
    mutexA.acquire()
    print(123)
    mutexA.release()
    mutexA.release()
    递归锁

    典型问题:科学家吃面

    import time
    from threading import Thread,Lock
    noodle_lock = Lock()
    fork_lock = Lock()
    def eat1(name):
        noodle_lock.acquire()
        print('%s 抢到了面条'%name)
        fork_lock.acquire()
        print('%s 抢到了叉子'%name)
        print('%s 吃面'%name)
        fork_lock.release()
        noodle_lock.release()
    
    def eat2(name):
        fork_lock.acquire()
        print('%s 抢到了叉子' % name)
        time.sleep(1)
        noodle_lock.acquire()
        print('%s 抢到了面条' % name)
        print('%s 吃面' % name)
        noodle_lock.release()
        fork_lock.release()
    
    for name in ['哪吒','egon','yuan']:
        t1 = Thread(target=eat1,args=(name,))
        t2 = Thread(target=eat2,args=(name,))
        t1.start()
        t2.start()
    死锁问题
    import time
    from threading import Thread,RLock
    fork_lock = noodle_lock = RLock()
    def eat1(name):
        noodle_lock.acquire()
        print('%s 抢到了面条'%name)
        fork_lock.acquire()
        print('%s 抢到了叉子'%name)
        print('%s 吃面'%name)
        fork_lock.release()
        noodle_lock.release()
    
    def eat2(name):
        fork_lock.acquire()
        print('%s 抢到了叉子' % name)
        time.sleep(1)
        noodle_lock.acquire()
        print('%s 抢到了面条' % name)
        print('%s 吃面' % name)
        noodle_lock.release()
        fork_lock.release()
    
    for name in ['哪吒','egon','yuan']:
        t1 = Thread(target=eat1,args=(name,))
        t2 = Thread(target=eat2,args=(name,))
        t1.start()
        t2.start()
    递归锁解决死锁问题

    4、信号量  threading.Semaphore

    Semaphore管理一个内置的计数器,
    每当调用acquire()时内置计数器-1;
    调用release() 时内置计数器+1;
    计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

    实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):

    from threading import Thread,Semaphore
    import threading
    import time
    # def func():
    #     if sm.acquire():
    #         print (threading.currentThread().getName() + ' get semaphore')
    #         time.sleep(2)
    #         sm.release()
    def func():
        sm.acquire()
        print('%s get sm' %threading.current_thread().getName())
        time.sleep(3)
        sm.release()
    if __name__ == '__main__':
        sm=Semaphore(5)
        for i in range(23):
            t=Thread(target=func)
            t.start()
    实例
    与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程
    池与信号量的区别

    5、事件  threading.Event

    事件方法:

    event.isSet():返回event的状态值;
    event.wait():如果 event.isSet()==False将阻塞线程;
    event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
    event.clear():恢复event的状态值为False。

    例:有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作

    import threading
    import time,random
    from threading import Thread,Event
    
    def conn_mysql():
        count=1
        while not event.is_set():
            if count > 3:
                raise TimeoutError('链接超时')
            print('<%s>第%s次尝试链接' % (threading.current_thread().getName(), count))
            event.wait(0.5)
            count+=1
        print('<%s>链接成功' %threading.current_thread().getName())
    
    
    def check_mysql():
        print('33[45m[%s]正在检查mysql33[0m' % threading.current_thread().getName())
        time.sleep(random.randint(2,4))
        event.set()
    if __name__ == '__main__':
        event=Event()
        conn1=Thread(target=conn_mysql)
        conn2=Thread(target=conn_mysql)
        check=Thread(target=check_mysql)
    
        conn1.start()
        conn2.start()
        check.start()
    示例

    6、条件  threading.Condition

    使得线程等待,只有满足某条件时,才释放n个线程

    Python提供的Condition对象提供了对复杂线程同步问题的支持。Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法。线程首先acquire一个条件变量,然后判断一些条件。如果条件不满足则wait;如果条件满足,进行一些处理改变条件后,通过notify方法通知其他线程,其他处于wait状态的线程接到通知后会重新判断条件。不断的重复这一过程,从而解决复杂的同步问题。
    详细说明
    import threading
    
    def run(n):
        con.acquire()
        con.wait()
        print("run the thread: %s" % n)
        con.release()
    
    if __name__ == '__main__':
    
        con = threading.Condition()
        for i in range(10):
            t = threading.Thread(target=run, args=(i,))
            t.start()
    
        while True:
            inp = input('>>>')
            if inp == 'q':
                break
            con.acquire()
            con.notify(int(inp))
            con.release()
            print('****')
    示例

    7、定时器  threading.Timer

    定时器,指定n秒后执行某个操作

    from threading import Timer
    
    def hello():
            print("hello, world")
    while True:    # 每隔一段时间要开启一个线程
        t = Timer(10, hello)   # 定时开启一个线程,执行一个任务
                          # 定时 : 多久之后 单位是s
                          # 要执行的任务 :函数名
        t.start()
    # sleep的时间
    # sleep的时间短 就在线程内while True
    # sleep的时间长 就在主线程while True

    8、线程队列  import queue

    queue队列 :使用import queue,用法与进程Queue一样

    queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.

    class queue.Queue(maxsize=0) #先进先出

    import queue
    
    q=queue.Queue()
    q.put('first')
    q.put('second')
    q.put('third')
    
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    结果(先进先出):
    first
    second
    third
    '''
    先进先出

    class queue.LifoQueue(maxsize=0) #last in fisrt out

    import queue
    
    q=queue.LifoQueue()
    q.put('first')
    q.put('second')
    q.put('third')
    
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    结果(后进先出):
    third
    second
    first
    '''
    后进先出

    class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

    import queue
    
    q=queue.PriorityQueue()
    #put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
    q.put((20,'a'))
    q.put((10,'b'))
    q.put((30,'c'))
    
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    结果(数字越小优先级越高,优先级高的优先出队):
    (10, 'b')
    (20, 'a')
    (30, 'c')
    '''
    优先级队列

    9、Python标准模块--concurrent.futures

    #1 介绍
    concurrent.futures模块提供了高度封装的异步调用接口
    ThreadPoolExecutor:线程池,提供异步调用
    ProcessPoolExecutor: 进程池,提供异步调用
    Both implement the same interface, which is defined by the abstract Executor class.
    
    #2 基本方法
    #submit(fn, *args, **kwargs)
    异步提交任务
    
    #map(func, *iterables, timeout=None, chunksize=1) 
    取代for循环submit的操作
    
    #shutdown(wait=True) 
    相当于进程池的pool.close()+pool.join()操作
    wait=True,等待池内所有任务执行完毕回收完资源后才继续
    wait=False,立即返回,并不会等待池内的任务执行完毕
    但不管wait参数为何值,整个程序都会等到所有任务执行完毕
    submit和map必须在shutdown之前
    
    #result(timeout=None)
    取得结果
    
    #add_done_callback(fn)
    回调函数
    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    
    import os,time,random
    def task(n):
        print('%s is runing' %os.getpid())
        time.sleep(random.randint(1,3))
        return n**2
    
    if __name__ == '__main__':
    
        executor=ThreadPoolExecutor(max_workers=3)
    
        # for i in range(11):
        #     future=executor.submit(task,i)
    
        executor.map(task,range(1,12)) #map取代了for+submit
    map的用法
    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    from multiprocessing import Pool
    import requests
    import json
    import os
    
    def get_page(url):
        print('<进程%s> get %s' %(os.getpid(),url))
        respone=requests.get(url)
        if respone.status_code == 200:
            return {'url':url,'text':respone.text}
    
    def parse_page(res):
        res=res.result()
        print('<进程%s> parse %s' %(os.getpid(),res['url']))
        parse_res='url:<%s> size:[%s]
    ' %(res['url'],len(res['text']))
        with open('db.txt','a') as f:
            f.write(parse_res)
    
    
    if __name__ == '__main__':
        urls=[
            'https://www.baidu.com',
            'https://www.python.org',
            'https://www.openstack.org',
            'https://help.github.com/',
            'http://www.sina.com.cn/'
        ]
    
        # p=Pool(3)
        # for url in urls:
        #     p.apply_async(get_page,args=(url,),callback=pasrse_page)
        # p.close()
        # p.join()
    
        p=ProcessPoolExecutor(3)
        for url in urls:
            p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果
    回调函数
  • 相关阅读:
    matlab练习程序(单源最短路径Bellman-Ford)
    matlab练习程序(广度优先搜索BFS、深度优先搜索DFS)
    matlab练习程序(模拟退火SA)
    matlab练习程序(演化策略ES)
    matlab练习程序(差异演化DE)
    matlab练习程序(粒子群优化PSO)
    安卓Webview缓存网页数据(无网络正常显示)
    Git之Github使用(一):Push代码到Github
    SuperIndicator 一个专用打造轮播的类库
    android的多次点击事件的实现(有源码)
  • 原文地址:https://www.cnblogs.com/gaoya666/p/8433473.html
Copyright © 2020-2023  润新知