• 卡尔曼滤波器实现代码


    #ifndef KALMANOFLIDAR_H
    #define KALMANOFLIDAR_H

    #include <EigenDense>
    #include <EigenCore>
    #include <vector>
    #include <iostream>

    using namespace std;
    using namespace Eigen;

    class kalmanFilter
    {

    public:
        vector<VectorXd> measurements;

        kalmanFilter();
        ~kalmanFilter();

        VectorXd measusre_data(VectorXd single_meas);
        void test();

    private:

        VectorXd Measurement_update_0(vector<VectorXd> measurements, int i=0)
        {
            VectorXd z = measurements[i];
            return z;
        }

        VectorXd Cal_measurement_perdcition_error_1_1(VectorXd &x_predict_i, VectorXd &z, MatrixXd &H)//H is the relation of input and output,output can be meausured, input need prediction
        {
             VectorXd y = z - H * x_predict_i;
             return y;
        }

        VectorXd Cal_kalmen_gain_1_2(MatrixXd &P_predict_i, MatrixXd &H, MatrixXd &Rnoise)
        {
            VectorXd S = H * P_predict_i*H.transpose() + Rnoise;
            VectorXd k = P_predict_i * H.transpose()*S.inverse();
            return k;
        }

        VectorXd Correctpredcit_x_2_1(VectorXd &y, VectorXd &x_predict_i, VectorXd &k)
        {
            VectorXd x_predict_calibration = x_predict_i + k * y;
            return x_predict_calibration;
        }

        MatrixXd Correctpredcit_P_2_2(MatrixXd &P_predict_i, VectorXd &k, MatrixXd &I,MatrixXd &H)
        {
            MatrixXd P_predict_calibration_i = (I - k * H)*P_predict_i;
            return P_predict_calibration_i;
        }

        VectorXd Generate_NewPredic_xVector_3_1(VectorXd &x_predict_calibration, VectorXd &unosie, MatrixXd &F)//F is the relation of this time and next time
        {
            VectorXd x_predict_iplus1 = F * x_predict_calibration + unosie;
            return x_predict_iplus1;
        }

        MatrixXd Generate_NewPredic_PMatrix_3_2(MatrixXd &P_predict_calibration_i, MatrixXd &F, MatrixXd &Qnoise)//F is the relation of this time and next time
        {
            MatrixXd P_predict_iplus1= F * P_predict_calibration_i*F.transpose() + Qnoise;
            return P_predict_iplus1;
        }

        void filter(VectorXd &x, MatrixXd &P, VectorXd &unosie, MatrixXd &F, MatrixXd &H, MatrixXd &Rnoise, MatrixXd &I, MatrixXd &Qnoise, int N);

    };

    -------------------------------------------------------------------------------------------------------------------------------------------------------------------

    #include "kalmanoflidar.h"

    using namespace std;
    using namespace Eigen;

    kalmanFilter::kalmanFilter()
    {
    }

    kalmanFilter::~kalmanFilter()
    {
    }

    VectorXd kalmanFilter::measusre_data(VectorXd single_meas)
    {
        measurements.push_back(single_meas);
        return single_meas;
    }


    void kalmanFilter::filter(VectorXd &x, MatrixXd &P, VectorXd &unosie, MatrixXd &F, MatrixXd &H, MatrixXd &Rnoise, MatrixXd &I, MatrixXd &Qnoise,int N)
    {
        VectorXd x_predict_i = x;
        MatrixXd P_predict_i = P;
        for (int i = 0;i < N;i++)
        {
            VectorXd z = Measurement_update_0(measurements, i);

            VectorXd y = Cal_measurement_perdcition_error_1_1(x_predict_i, z, H);//H is the relation of input and output

            VectorXd k = Cal_kalmen_gain_1_2(P_predict_i, H, Rnoise);

            VectorXd x_predict_calibration_i = Correctpredcit_x_2_1(y, x_predict_i, k);//F is the relation of this time and next time

            MatrixXd P_predict_calibration_i = Correctpredcit_P_2_2(P_predict_i, k, I,H);

            VectorXd x_predict_iplus1 = Generate_NewPredic_xVector_3_1(x_predict_calibration_i, unosie, F);//F is the relation of this time and next time

            MatrixXd P_predict_iplus1 = Generate_NewPredic_PMatrix_3_2(P_predict_calibration_i, F, Qnoise);//F is the relation of this time and next time

            x_predict_i = x_predict_iplus1;

            P_predict_i = P_predict_iplus1;
        }
    }


    void kalmanFilter::test()
    {
        
    VectorXd x;
    MatrixXd P;
    VectorXd u;
    MatrixXd F;
    MatrixXd H;
    MatrixXd R;
    MatrixXd I;
    MatrixXd Q;

        printf("hello world ");
        VectorXd my_vector(2);
        my_vector << 10, 20;
        MatrixXd my_matrix(2, 2);
        my_matrix << 1, 2, 3, 4;
        cout << my_matrix << endl;
        cout << my_vector << endl;

        x = VectorXd(2);
        x << 0, 0;

        P = MatrixXd(2, 2);
        P << 1000, 1000, -1000, 1000;

        u = VectorXd(2);
        u << 0, 0;

        F = MatrixXd(2, 2);
        F << 1, 1, 0, 1;

        H = MatrixXd(1, 2);
        H << 1, 0;

        R = MatrixXd(1, 1);
        R << 1;

        I = MatrixXd::Identity(2, 2);

        Q = MatrixXd(2, 2);
        Q << 0, 0, 0, 0;

        //create a list of measurements
        VectorXd single_meas(1);
        single_meas << 1;
        measurements.push_back(single_meas);
        single_meas << 5;
        measurements.push_back(single_meas);
        single_meas << 9;
        measurements.push_back(single_meas);
        single_meas << 13;
        measurements.push_back(single_meas);
        single_meas << 17;
        measurements.push_back(single_meas);
        single_meas << 21;
        measurements.push_back(single_meas);
        single_meas << 25;
        measurements.push_back(single_meas);
        single_meas << 29;
        measurements.push_back(single_meas);
        filter(x, P,u,F,H,R,I, Q,8);
        ;
    }



    #endif // KALMANOFLIDAR_H

  • 相关阅读:
    TouchAction实现连续滑动设置手势密码
    用命令方式启动、停止appium服务和app
    企业软件防火墙iptables
    磁盘分区
    docker-网络
    docker-镜像管理基础
    docker-简单操作
    docker-安装
    python-函数
    find一些常用参数的一些常用实例和一些具体用法和注意事项。
  • 原文地址:https://www.cnblogs.com/gaoxianzhi/p/9456652.html
Copyright © 2020-2023  润新知