• 梯度消失(爆炸)及其解决方式


    梯度消失和梯度爆炸的解决之道

    参考<机器学习炼丹术>

    因为梯度不稳定,因此产生梯度消失和梯度爆炸的问题

    出现原因

    梯度消失和梯度爆炸是指前面几层的梯度,因为链式法则不断乘小于(大于)1的数,导致梯度非常小(大)的现象;
    sigmoid导数最大0.25,一般都是梯度消失问题。

    两者出现原因都是因为链式法则。当模型的层数过多的时候,计算梯度的时候就会出现非常多的乘积项。用下面这个例子来理解:

    这里还可以说一句sigmoid是饱和函数,它是有届的

    解决方法

    更改激活函数

    最常见的方案就是更改激活函数,现在神经网络中,除了最后二分类问题的最后一层会用sigmoid之外,每一层的激活函数一般都是用ReLU。

    如果激活函数的导数是1,那么就没有梯度爆炸问题了。

    增加batchnorm层

    这个是非常给力的成功,在图像处理中必用的层了。BN层提出来的本质就是为了解决反向传播中的梯度问题。

    在神经网络中,有这样的一个问题:Internal Covariate Shift。假设第一层的输入数据经过第一层的处理之后,得到第二层的输入数据。这时候,第二层的输入数据相对第一层的数据分布,就会发生改变,所以这一个batch,第二层的参数更新是为了拟合第二层的输入数据的那个分布。然而到了下一个batch,因为第一层的参数也改变了,所以第二层的输入数据的分布相比上一个batch,又不太一样了。然后第二层的参数更新方向也会发生改变。层数越多,这样的问题就越明显。

    但是为了保证每一层的分布不变的话,那么如果把每一层输出的数据都归一化0均值,1方差不就好了?但是这样就会完全学习不到输入数据的特征了。不管什么数据都是服从标准正太分布,想想也会觉得有点奇怪。所以BN就是增加了两个自适应参数,可以通过训练学习的那种参数。这样把每一层的数据都归一化到均值,标准差的正态分布上。

    【将输入分布变成正态分布,是一种去除数据绝对差异,扩大相对差异的一种行为,所以BN层用在分类上效果的好的。对于Image-to-Image这种任务,数据的绝对差异也是非常重要的,所以BN层可能起不到相应的效果。】

    增加残差结构

    L2正则化

    之前提到的梯度爆炸问题,一般都是因为(w_j)过大造成的,那么用L2正则化就可以解决问题。

    另外一种解决梯度爆炸的手段是采用权重正则化(weithts regularization),正则化主要是通过对网络权重做正则来限制过拟合。如果发生梯度爆炸,那么权值就会变的非常大,反过来,通过正则化项来限制权重的大小,也可以在一定程度上防止梯度爆炸的发生。比较常见的是 L1 正则和 L2 正则,在各个深度框架中都有相应的API可以使用正则化。

    换网络结构

    比如换成lstm

  • 相关阅读:
    怎么样从多列的DataTable里取需要的几列
    .net core 生成二维码
    sql server2012卸载
    github实用的搜索小技巧
    c# 中的索引
    IOC
    Python基础-while
    Python基础-判断闰年
    Python基础-while奇数和
    Python基础-奇偶判断调用函数
  • 原文地址:https://www.cnblogs.com/gaowenxingxing/p/13257297.html
Copyright © 2020-2023  润新知