• codeforces660C


    Hard Process

     CodeForces - 660C 

    You are given an array a with n elements. Each element of a is either 0 or 1.

    Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a).

    Input

    The first line contains two integers n and k (1 ≤ n ≤ 3·105, 0 ≤ k ≤ n) — the number of elements in a and the parameter k.

    The second line contains n integers ai (0 ≤ ai ≤ 1) — the elements of a.

    Output

    On the first line print a non-negative integer z — the maximal value of f(a) after no more than k changes of zeroes to ones.

    On the second line print n integers aj — the elements of the array a after the changes.

    If there are multiple answers, you can print any one of them.

    Examples

    Input
    7 1
    1 0 0 1 1 0 1
    Output
    4
    1 0 0 1 1 1 1
    Input
    10 2
    1 0 0 1 0 1 0 1 0 1
    Output
    5
    1 0 0 1 1 1 1 1 0 1

    sol:只能把0变成1,而且要让连续的一段尽可能的大,于是可以枚举右端点二分左端点,判断那一段0的个数与K的关系
    #include <bits/stdc++.h>
    using namespace std;
    typedef int ll;
    inline ll read()
    {
        ll s=0;
        bool f=0;
        char ch=' ';
        while(!isdigit(ch))
        {
            f|=(ch=='-'); ch=getchar();
        }
        while(isdigit(ch))
        {
            s=(s<<3)+(s<<1)+(ch^48); ch=getchar();
        }
        return (f)?(-s):(s);
    }
    #define R(x) x=read()
    inline void write(ll x)
    {
        if(x<0)
        {
            putchar('-'); x=-x;
        }
        if(x<10)
        {
            putchar(x+'0');    return;
        }
        write(x/10);
        putchar((x%10)+'0');
        return;
    }
    #define W(x) write(x),putchar(' ')
    #define Wl(x) write(x),putchar('
    ')
    const int N=300005;
    int n,m,a[N],S[N];
    int Ans[N];
    inline int TwoFind(int l,int r)
    {
        int Pos=r,ans=r+1;;
        while(l<=r)
        {
            int mid=(l+r)>>1;
            if(S[Pos]-S[mid-1]<=m)
            {
                ans=mid; r=mid-1;
            }
            else l=mid+1;
        }
        return ans;
    }
    int main()
    {
        int i,Pos=0;
        R(n); R(m);
        for(i=1;i<=n;i++)
        {
            R(a[i]); S[i]+=S[i-1]+(a[i]==0);
            int oo=TwoFind(1,i);
            Ans[i]=i-oo+1;
            if(Ans[i]>Ans[Pos]) Pos=i;
        }
        Wl(Ans[Pos]);
        for(i=Pos;i>=1&&m;i--) if(a[i]==0) a[i]=1,m--;
        for(i=1;i<=n;i++) W(a[i]);
        return 0;
    }
    /*
    Input
    7 1
    1 0 0 1 1 0 1
    Output
    4
    1 0 0 1 1 1 1
    
    Input
    10 2
    1 0 0 1 0 1 0 1 0 1
    Output
    5
    1 0 0 1 1 1 1 1 0 1
    */
    View Code
     
  • 相关阅读:
    7-[CSS]-css介绍,引入方式
    6-[HTML]-标签属性
    5-[HTML]-body常用标签2
    4-[HTML]-body常用标签1
    3-[HTML]-head标签介绍
    2-[HTML]--介绍
    1-[前端]--前端内容介绍
    35
    33 -jQuery 属性操作,文档操作(未完成)
    1o xiaomi
  • 原文地址:https://www.cnblogs.com/gaojunonly1/p/10748161.html
Copyright © 2020-2023  润新知