• 一本通1593【例 2】牧场的安排


    1593:【例 2】牧场的安排

    时间限制: 1000 ms         内存限制: 524288 KB

    【题目描述】

    原题来自:USACO 2006 Nov. Gold

    Farmer John 新买了一块长方形的牧场,这块牧场被划分成 M 行 N 列 (1M12;1N12),每一格都是一块正方形的土地。FJ 打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地,于是 FJ 不会选择两块相邻的土地,即:没有哪两块草地有公共边。当然,FJ 还没有决定在哪些土地上种草。

    作为一个好奇的农场主,FJ 想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮 FJ 算一下这个总方案数。

    【输入】

    第 1 行:两个正整数 M 和 N,用空格隔开;

    第 2 到 M+1 行:每行包含 N 个用空格隔开的整数,描述了每块土地的状态。输入的第 i+1 行描述了第 i 行的土地。所有整数均为 0 或 11 表示这块土地足够肥沃,0 则表示这块地上不适合种草。

    【输出】

    第 1 行:输出一个整数,即牧场分配总方案数除以 108  的余数。

    【输入样例】

    2 3  
    1 1 1  
    0 1 0

    【输出样例】

    9

    【提示】

    样例说明

    按下图把各块土地编号:

    1 2 3  
    0 4 0

    只开辟一块草地有 4 种方案:选 1,2,3,4 中的任一块。开辟两块草地的话,有 3 种方案:13,14 以及 34。选三块草地只有一种方案:134。再加把牧场荒废的那一种,总方案数为 4+3+1+1=9 种。

    数据范围与提示:

    1≤N,M≤12。

    sol:这是一道状压dp(废话),由于我借鉴了自己国王的思路,光荣的变成最差解(时间和空间都是最劣的),dp[i][j][k]表示到第i行,放了j个牧草,这行的状态为k,暴力预处理+超暴力转移

    #include <bits/stdc++.h>
    using namespace std;
    typedef int ll;
    inline ll read()
    {
        ll s=0;
        bool f=0;
        char ch=' ';
        while(!isdigit(ch))
        {
            f|=(ch=='-');
            ch=getchar();
        }
        while(isdigit(ch))
        {
            s=(s<<3)+(s<<1)+(ch^48);
            ch=getchar();
        }
        return (f)?(-s):(s);
    }
    #define R(x) x=read()
    inline void write(ll x)
    {
        if(x<0)
        {
            putchar('-');
            x=-x;
        }
        if(x<10)
        {
            putchar(x+'0');
            return;
        }
        write(x/10);
        putchar((x%10)+'0');
        return;
    }
    inline void writeln(ll x)
    {
        write(x);
        putchar('
    ');
        return;
    }
    #define W(x) write(x),putchar(' ')
    #define Wl(x) writeln(x)
    const int Mod=100000000;
    int n,m,dp[15][12*12+5][(1<<12)+5];
    int Zhuangt[15],Ges[(1<<12)+5];
    bool Jud[(1<<12)+5],Can[(1<<12)+5][(1<<12)+5];
    int main()
    {
        int i,j,k,ii,jj;
        R(m); R(n);
        for(i=1;i<=m;i++)
        {
            int x;
            Zhuangt[i]=0;
            for(j=1;j<=n;j++)
            {
                R(x); if(x) Zhuangt[i]|=(1<<(j-1));
            }
        }
        for(i=0;i<(1<<n);i++)
        {
            bool bo=1;
            for(j=2;j<=n&&bo;j++) if((i&(1<<(j-2)))&&(i&(1<<(j-1)))) bo=0;
            Jud[i]=bo;
            Ges[i]=0;
            for(j=1;j<=n;j++) if(i&(1<<(j-1))) Ges[i]++;
        }
        for(i=0;i<(1<<n);i++) if(Jud[i])
        {
            for(j=0;j<(1<<n);j++) if(Jud[j])
            {
                bool bo=1;
                for(k=1;k<=n&&bo;k++) if(i&(1<<(k-1)))
                {
                    if(j&(1<<(k-1))) bo=0;
                }
                if(bo)    Can[i][j]=1;
            }
        }
        for(i=0;i<(1<<n);i++) if(((i&Zhuangt[1])==i)&&(Jud[i])) dp[1][Ges[i]][i]=1;
        for(i=2;i<=m;i++)
        {
            for(j=0;j<=(i-1)*n;j++)
            {
                for(ii=0;ii<(1<<n);ii++) if(dp[i-1][j][ii])
                {
                    for(jj=0;jj<(1<<n);jj++) if(Can[ii][jj]&&((jj&Zhuangt[i])==jj))
                    {
                        dp[i][j+Ges[jj]][jj]+=dp[i-1][j][ii];
                        dp[i][j+Ges[jj]][jj]-=(dp[i][j+Ges[jj]][jj]>=Mod)?(Mod):0;
                    }
                }
            }
        }
        int ans=0;
        for(i=0;i<=(n*m);i++)
        {
            for(j=0;j<(1<<n);j++) if(dp[m][i][j])
            {
    //            printf("dp[%d][%d][%d]=%d
    ",m,i,j,dp[m][i][j]);
                ans+=dp[m][i][j];
                ans-=(ans>=Mod)?Mod:0;
            }
        }
        Wl(ans);
        return 0;
    }
    /*
    input
    2 3  
    1 1 1  
    0 1 0
    output
    9
    
    input
    1 10
    1 1 1 1 1 1 1 1 1 1
    output
    144
    */
    View Code
  • 相关阅读:
    log4net 简单使用教程(配置)
    C#WinForm 国际化的简单实现,多语言实现
    EF Power Tool 参数错误 HRESULT:0x80070057 (E_INVALIDARG)) 解决办法
    如何用委托与事件实现winfrom窗体之间值传递
    VS2010自带的Dotfuscator 5注册
    WinForm 实现主程序(exe)与其关联类库(*.dll)分开存放
    POJ_3211 Washing Clothes (01背包)
    POJ_3624 Charm Bracelet ( 01背包 )
    集训队内部测试赛(2012.01.02)
    HDU_1011 Starship Troopers && HDU_1561 The more, The Better (树型dp)
  • 原文地址:https://www.cnblogs.com/gaojunonly1/p/10364486.html
Copyright © 2020-2023  润新知