• 找滑动窗口的中位数


    原文地址

    找滑动窗口的中位数,主要思想利用堆,一个左边大顶堆,右边小顶堆,中间中位数。滑动窗口的过程中,添加新元素,删除不在窗口范围的老元素,并且调节两个堆的size保持平衡。

    public class Solution {  
        public class minComparator implements Comparator<Integer> {  
            public int compare(Integer a, Integer b){  
                if(a > b) return 1;  
                else if(a == b) return 0;  
                else return -1;  
            }  
        }  
        public class maxComparator implements Comparator<Integer> {  
             public int compare(Integer a, Integer b){  
                if(a > b) return -1;  
                else if(a == b) return 0;  
                else return 1;  
            }  
        }  
        /** 
         * @param nums: A list of integers. 
         * @return: The median of the element inside the window at each moving. 
         */  
        public ArrayList<Integer> medianSlidingWindow(int[] nums, int k) {  
            // write your code here  
            ArrayList<Integer> res = new ArrayList<Integer>();  
            if(nums.length < k || k <= 0) {  
                return res;  
            }  
              
            PriorityQueue<Integer> minHeap = new PriorityQueue<Integer> (k, new minComparator());  
            PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer> (k, new maxComparator());  
              
            int median = nums[0];  
            for(int i = 1; i < k; i++){  
                if(nums[i] < median) {  
                    maxHeap.offer(nums[i]);  
                }  
                else {  
                    minHeap.offer(nums[i]);  
                }  
                if(maxHeap.size() > minHeap.size()){  
                    minHeap.offer(median);  
                    median = maxHeap.poll();  
                }  
                if(maxHeap.size() < minHeap.size()-1){  
                    maxHeap.offer(median);  
                    median = minHeap.poll();  
                }  
            }  
            res.add(median);  
              
            for(int i = k ; i < nums.length; i++){  
                // add new one  
                if(nums[i] < median) {  
                    maxHeap.offer(nums[i]);  
                }  
                else {  
                    minHeap.offer(nums[i]);  
                }  
      
                // remove the old out of heaps  
                int old = nums[i-k];  
                if(old == median) {  
                    if(minHeap.size() > maxHeap.size()){  
                        median = minHeap.poll();  
                    }  
                    else {  
                        median = maxHeap.poll();  
                    }  
                }  
                else if(old < median) {  
                    maxHeap.remove(old);  
                }  
                else {  
                    minHeap.remove(old);  
                }  
                  
                while(maxHeap.size() > minHeap.size()){  
                    minHeap.offer(median);  
                    median = maxHeap.poll();  
                }  
                while(maxHeap.size() < (minHeap.size()-1)){  
                    maxHeap.offer(median);  
                    median = minHeap.poll();  
                }  
                  
                res.add(median);  
            }  
              
            return res;  
        }  
    }  
      
      
      
    /////////////  
    对于数组 [1,2,7,8,5], 滑动大小 k = 3 的窗口时,返回 [2,7,7]  
      
    最初,窗口的数组是这样的:  
      
    [ | 1,2,7 | ,8,5] , 返回中位数 2;  
      
    接着,窗口继续向前滑动一次。  
      
    [1, | 2,7,8 | ,5], 返回中位数 7;  
      
    接着,窗口继续向前滑动一次。  
      
    [1,2, | 7,8,5 | ], 返回中位数 7;  
  • 相关阅读:
    数据库范式
    SQL--使用NewID函数,创建GUID列
    初学Python
    Artificial intelligence(AI)
    Concurrency in csharp (Asynchronous, Parallel, and Multithreaded Programming)
    MySQL 5.7 create VIEW or FUNCTION or PROCEDURE
    csharp: Oracle Stored Procedure DAL using ODP.NET
    csharp: ODP.NET,System.Data.OracleClient(.net 4.0) and System.Data.OleDb读取Oracle g 11.2.0的区别
    csharp:ASP.NET SignalR
    csharp: MySQL Stored Procedure using DAL
  • 原文地址:https://www.cnblogs.com/gaofei-1/p/7474009.html
Copyright © 2020-2023  润新知