Sliding Window Maximum
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
Hint:
- How about using a data structure such as deque (double-ended queue)?
- The queue size need not be the same as the window’s size.
- Remove redundant elements and the queue should store only elements that need to be considered.
参考fentoyal的单调队列做法,我加上一些解释。
双端队列mq存放的是二元组,
第一元素表示当前值,
第二元素表示在队列中末尾值之后,在当前值之前并且小于当前值的个数。
mq的首个二元组的第一元素表示窗口范围内的最大值。
max函数:
返回首个二元组的第一元素
push函数:
为了保证max函数的作用,需要从末尾开始,把小于当前值的连续二元组出队列,但是需要累加上小于当前值的数目。
pop函数:
如果窗口在首个二元组之前还有元素,那么对队列影响就是首个二元组的计数减一。
否则代表首个二元组就是待出队的值,出队。
class MonoQue { public: deque<pair<int, int> > q; int maxV() { return q.front().first; } void push(int n) { int count = 0; while(!q.empty() && q.back().first < n) { count += (q.back().second + 1); q.pop_back(); } q.push_back(make_pair(n, count)); } void pop() { if(q.front().second > 0) q.front().second --; else q.pop_front(); } }; class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int> ret; if(k == 0) return ret; MonoQue mq; for(int i = 0; i < k; i ++) mq.push(nums[i]); for(int i = k; i < nums.size(); i ++) { ret.push_back(mq.maxV()); mq.pop(); mq.push(nums[i]); } ret.push_back(mq.maxV()); return ret; } };