• 【DeepLearning】Exercise:Self-Taught Learning


    Exercise:Self-Taught Learning

    习题链接:Exercise:Self-Taught Learning

    feedForwardAutoencoder.m

    function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data)
    
    % theta: trained weights from the autoencoder
    % visibleSize: the number of input units (probably 64) 
    % hiddenSize: the number of hidden units (probably 25) 
    % data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 
      
    % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
    % follows the notation convention of the lecture notes. 
    
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder.
    activation = sigmoid(W1 * data + repmat(b1, 1, size(data, 2)));
    
    %-------------------------------------------------------------------
    
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end

    stlExercise.m

    %% CS294A/CS294W Self-taught Learning Exercise
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  self-taught learning. You will need to complete code in feedForwardAutoencoder.m
    %  You will also need to have implemented sparseAutoencoderCost.m and 
    %  softmaxCost.m from previous exercises.
    %
    %% ======================================================================
    %  STEP 0: Here we provide the relevant parameters values that will
    %  allow your sparse autoencoder to get good filters; you do not need to 
    %  change the parameters below.
    
    inputSize  = 28 * 28;
    numLabels  = 5;
    hiddenSize = 200;
    sparsityParam = 0.1; % desired average activation of the hidden units.
                         % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
                         %  in the lecture notes). 
    lambda = 3e-3;       % weight decay parameter       
    beta = 3;            % weight of sparsity penalty term   
    maxIter = 400;
    
    %% ======================================================================
    %  STEP 1: Load data from the MNIST database
    %
    %  This loads our training and test data from the MNIST database files.
    %  We have sorted the data for you in this so that you will not have to
    %  change it.
    
    % Load MNIST database files
    mnistData   = loadMNISTImages('mnist/train-images-idx3-ubyte');
    mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');
    
    % Set Unlabeled Set (All Images)
    
    % Simulate a Labeled and Unlabeled set
    labeledSet   = find(mnistLabels >= 0 & mnistLabels <= 4);
    unlabeledSet = find(mnistLabels >= 5);
    
    numTrain = round(numel(labeledSet)/2);
    trainSet = labeledSet(1:numTrain);
    testSet  = labeledSet(numTrain+1:end);
    
    unlabeledData = mnistData(:, unlabeledSet);
    
    trainData   = mnistData(:, trainSet);
    trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5
    
    testData   = mnistData(:, testSet);
    testLabels = mnistLabels(testSet)' + 1;   % Shift Labels to the Range 1-5
    
    % Output Some Statistics
    fprintf('# examples in unlabeled set: %d
    ', size(unlabeledData, 2));
    fprintf('# examples in supervised training set: %d
    
    ', size(trainData, 2));
    fprintf('# examples in supervised testing set: %d
    
    ', size(testData, 2));
    
    %% ======================================================================
    %  STEP 2: Train the sparse autoencoder
    %  This trains the sparse autoencoder on the unlabeled training
    %  images. 
    
    %  Randomly initialize the parameters
    theta = initializeParameters(hiddenSize, inputSize);
    
    %% ----------------- YOUR CODE HERE ----------------------
    %  Find opttheta by running the sparse autoencoder on
    %  unlabeledTrainingImages
    
    %  Use minFunc to minimize the function
    addpath minFunc/
    options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                              % function. Generally, for minFunc to work, you
                              % need a function pointer with two outputs: the
                              % function value and the gradient. In our problem,
                              % sparseAutoencoderCost.m satisfies this.
    options.maxIter = maxIter;% Maximum number of iterations of L-BFGS to run 
    options.display = 'on';
    
    
    [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                       inputSize, hiddenSize, ...
                                       lambda, sparsityParam, ...
                                       beta, unlabeledData), ...
                                  theta, options);
    
    %% -----------------------------------------------------
                              
    % Visualize weights
    W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize);
    display_network(W1');
    
    %%======================================================================
    %% STEP 3: Extract Features from the Supervised Dataset
    %  
    %  You need to complete the code in feedForwardAutoencoder.m so that the 
    %  following command will extract features from the data.
    
    trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
                                           trainData);
    
    testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
                                           testData);
    
    %%======================================================================
    %% STEP 4: Train the softmax classifier
    
    %% ----------------- YOUR CODE HERE ----------------------
    %  Use softmaxTrain.m from the previous exercise to train a multi-class
    %  classifier. 
    
    %  Use lambda = 1e-4 for the weight regularization for softmax
    
    % You need to compute softmaxModel using softmaxTrain on trainFeatures and
    % trainLabels
    
    lambda = 1e-4;
    options.maxIter = maxIter;
    [softmaxModel] = softmaxTrain(hiddenSize, numLabels, lambda, trainFeatures, trainLabels, options);
    
    %% -----------------------------------------------------
    
    
    %%======================================================================
    %% STEP 5: Testing 
    
    %% ----------------- YOUR CODE HERE ----------------------
    % Compute Predictions on the test set (testFeatures) using softmaxPredict
    % and softmaxModel
    [pred] = softmaxPredict(softmaxModel, testFeatures);
    
    %% -----------------------------------------------------
    
    % Classification Score
    fprintf('Test Accuracy: %f%%
    ', 100*mean(pred(:) == testLabels(:)));
    
    % (note that we shift the labels by 1, so that digit 0 now corresponds to
    %  label 1)
    %
    % Accuracy is the proportion of correctly classified images
    % The results for our implementation was:
    %
    % Accuracy: 98.3%
    %
    % 

    Test Accuracy: 98.208916%

  • 相关阅读:
    python-django-自定义分页
    self.user = serializer_field.context['request'].user KeyError: 'request
    无法ssh远程的解决办法
    关于put和patch区别的一篇文章
    一遍关于django rest framework serializer比较详细的笔记
    vim 简单配置(根据编程语言不同,自动缩进)
    django rest framework 的api返回html
    django rest frmaework jwt认证
    django 信号
    刘江的博客
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4214639.html
Copyright © 2020-2023  润新知