Trapping Rain Water
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
双指针left,right分别从首尾开始扫,记当前left指针遇到的最大值为leftWall,right指针遇到的最大值为rightWall
(1)leftWall <= rightWall
left前进一个位置。
对于left指针指向的位置,若存在被trap,则被trap的值为(leftWall-A[left])。
解释如下:
a.如果left与right之间不存在比leftWall大的值,那么i位置trap的值就取决与leftWall与rightWall的较小值,也就是leftWall
b.如果left与right之间存在比leftWall大的值,其中离leftWall最近的记为newLeftWall,那么i位置trap的值就取决与leftWall与newLeftWall的较小值,也就是leftWall
(2)leftWall > rightWall
right后退一个位置。
对于right指针指向的位置,被trap的值为(rightWall-A[right])。
解释同上。
class Solution { public: int trap(int A[], int n) { int ret = 0; int left = 0; int right = n-1; int leftWall = A[left]; int rightWall = A[right]; while(left < right) { if(leftWall <= rightWall) { left ++; if(A[left] <= leftWall) ret += (leftWall - A[left]); else leftWall = A[left]; } else { right --; if(A[right] <= rightWall) ret += (rightWall - A[right]); else rightWall = A[right]; } } return ret; } };