源码:
1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.android.volley; 18 19 import android.os.Handler; 20 import android.os.Looper; 21 22 import java.util.ArrayList; 23 import java.util.HashMap; 24 import java.util.HashSet; 25 import java.util.LinkedList; 26 import java.util.List; 27 import java.util.Map; 28 import java.util.Queue; 29 import java.util.Set; 30 import java.util.concurrent.PriorityBlockingQueue; 31 import java.util.concurrent.atomic.AtomicInteger; 32 33 /** 34 * A request dispatch queue with a thread pool of dispatchers. 35 * 36 * Calling {@link #add(Request)} will enqueue the given Request for dispatch, 37 * resolving from either cache or network on a worker thread, and then delivering 38 * a parsed response on the main thread. 39 */ 40 public class RequestQueue { 41 42 /** Callback interface for completed requests. */ 43 public static interface RequestFinishedListener<T> { 44 /** Called when a request has finished processing. */ 45 public void onRequestFinished(Request<T> request); 46 } 47 48 /** Used for generating monotonically-increasing sequence numbers for requests. */ 49 private AtomicInteger mSequenceGenerator = new AtomicInteger(); 50 51 /** 52 * Staging area for requests that already have a duplicate request in flight. 53 * 54 * <ul> 55 * <li>containsKey(cacheKey) indicates that there is a request in flight for the given cache 56 * key.</li> 57 * <li>get(cacheKey) returns waiting requests for the given cache key. The in flight request 58 * is <em>not</em> contained in that list. Is null if no requests are staged.</li> 59 * </ul> 60 */ 61 private final Map<String, Queue<Request<?>>> mWaitingRequests = 62 new HashMap<String, Queue<Request<?>>>(); 63 64 /** 65 * The set of all requests currently being processed by this RequestQueue. A Request 66 * will be in this set if it is waiting in any queue or currently being processed by 67 * any dispatcher. 68 */ 69 private final Set<Request<?>> mCurrentRequests = new HashSet<Request<?>>(); 70 71 /** The cache triage queue. */ 72 private final PriorityBlockingQueue<Request<?>> mCacheQueue = 73 new PriorityBlockingQueue<Request<?>>(); 74 75 /** The queue of requests that are actually going out to the network. */ 76 private final PriorityBlockingQueue<Request<?>> mNetworkQueue = 77 new PriorityBlockingQueue<Request<?>>(); 78 79 /** Number of network request dispatcher threads to start. */ 80 private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4; 81 82 /** Cache interface for retrieving and storing responses. */ 83 private final Cache mCache; 84 85 /** Network interface for performing requests. */ 86 private final Network mNetwork; 87 88 /** Response delivery mechanism. */ 89 private final ResponseDelivery mDelivery; 90 91 /** The network dispatchers. */ 92 private NetworkDispatcher[] mDispatchers; 93 94 /** The cache dispatcher. */ 95 private CacheDispatcher mCacheDispatcher; 96 97 private List<RequestFinishedListener> mFinishedListeners = 98 new ArrayList<RequestFinishedListener>(); 99 100 /** 101 * Creates the worker pool. Processing will not begin until {@link #start()} is called. 102 * 103 * @param cache A Cache to use for persisting responses to disk 104 * @param network A Network interface for performing HTTP requests 105 * @param threadPoolSize Number of network dispatcher threads to create 106 * @param delivery A ResponseDelivery interface for posting responses and errors 107 */ 108 public RequestQueue(Cache cache, Network network, int threadPoolSize, 109 ResponseDelivery delivery) { 110 mCache = cache; 111 mNetwork = network; 112 mDispatchers = new NetworkDispatcher[threadPoolSize]; 113 mDelivery = delivery; 114 } 115 116 /** 117 * Creates the worker pool. Processing will not begin until {@link #start()} is called. 118 * 119 * @param cache A Cache to use for persisting responses to disk 120 * @param network A Network interface for performing HTTP requests 121 * @param threadPoolSize Number of network dispatcher threads to create 122 */ 123 public RequestQueue(Cache cache, Network network, int threadPoolSize) { 124 this(cache, network, threadPoolSize, 125 new ExecutorDelivery(new Handler(Looper.getMainLooper()))); 126 } 127 128 /** 129 * Creates the worker pool. Processing will not begin until {@link #start()} is called. 130 * 131 * @param cache A Cache to use for persisting responses to disk 132 * @param network A Network interface for performing HTTP requests 133 */ 134 public RequestQueue(Cache cache, Network network) { 135 this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE); 136 } 137 138 /** 139 * Starts the dispatchers in this queue. 140 */ 141 public void start() { 142 stop(); // Make sure any currently running dispatchers are stopped. 143 // Create the cache dispatcher and start it. 144 mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery); 145 mCacheDispatcher.start(); 146 147 // Create network dispatchers (and corresponding threads) up to the pool size. 148 for (int i = 0; i < mDispatchers.length; i++) { 149 NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork, 150 mCache, mDelivery); 151 mDispatchers[i] = networkDispatcher; 152 networkDispatcher.start(); 153 } 154 } 155 156 /** 157 * Stops the cache and network dispatchers. 158 */ 159 public void stop() { 160 if (mCacheDispatcher != null) { 161 mCacheDispatcher.quit(); 162 } 163 for (int i = 0; i < mDispatchers.length; i++) { 164 if (mDispatchers[i] != null) { 165 mDispatchers[i].quit(); 166 } 167 } 168 } 169 170 /** 171 * Gets a sequence number. 172 */ 173 public int getSequenceNumber() { 174 return mSequenceGenerator.incrementAndGet(); 175 } 176 177 /** 178 * Gets the {@link Cache} instance being used. 179 */ 180 public Cache getCache() { 181 return mCache; 182 } 183 184 /** 185 * A simple predicate or filter interface for Requests, for use by 186 * {@link RequestQueue#cancelAll(RequestFilter)}. 187 */ 188 public interface RequestFilter { 189 public boolean apply(Request<?> request); 190 } 191 192 /** 193 * Cancels all requests in this queue for which the given filter applies. 194 * @param filter The filtering function to use 195 */ 196 public void cancelAll(RequestFilter filter) { 197 synchronized (mCurrentRequests) { 198 for (Request<?> request : mCurrentRequests) { 199 if (filter.apply(request)) { 200 request.cancel(); 201 } 202 } 203 } 204 } 205 206 /** 207 * Cancels all requests in this queue with the given tag. Tag must be non-null 208 * and equality is by identity. 209 */ 210 public void cancelAll(final Object tag) { 211 if (tag == null) { 212 throw new IllegalArgumentException("Cannot cancelAll with a null tag"); 213 } 214 cancelAll(new RequestFilter() { 215 @Override 216 public boolean apply(Request<?> request) { 217 return request.getTag() == tag; 218 } 219 }); 220 } 221 222 /** 223 * Adds a Request to the dispatch queue. 224 * @param request The request to service 225 * @return The passed-in request 226 */ 227 public <T> Request<T> add(Request<T> request) { 228 // Tag the request as belonging to this queue and add it to the set of current requests. 229 request.setRequestQueue(this); 230 synchronized (mCurrentRequests) { 231 mCurrentRequests.add(request); 232 } 233 234 // Process requests in the order they are added. 235 request.setSequence(getSequenceNumber()); 236 request.addMarker("add-to-queue"); 237 238 // If the request is uncacheable, skip the cache queue and go straight to the network. 239 if (!request.shouldCache()) { 240 mNetworkQueue.add(request); 241 return request; 242 } 243 244 // Insert request into stage if there's already a request with the same cache key in flight. 245 synchronized (mWaitingRequests) { 246 String cacheKey = request.getCacheKey(); 247 if (mWaitingRequests.containsKey(cacheKey)) { 248 // There is already a request in flight. Queue up. 249 Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey); 250 if (stagedRequests == null) { 251 stagedRequests = new LinkedList<Request<?>>(); 252 } 253 stagedRequests.add(request); 254 mWaitingRequests.put(cacheKey, stagedRequests); 255 if (VolleyLog.DEBUG) { 256 VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey); 257 } 258 } else { 259 // Insert 'null' queue for this cacheKey, indicating there is now a request in 260 // flight. 261 mWaitingRequests.put(cacheKey, null); 262 mCacheQueue.add(request); 263 } 264 return request; 265 } 266 } 267 268 /** 269 * Called from {@link Request#finish(String)}, indicating that processing of the given request 270 * has finished. 271 * 272 * <p>Releases waiting requests for <code>request.getCacheKey()</code> if 273 * <code>request.shouldCache()</code>.</p> 274 */ 275 <T> void finish(Request<T> request) { 276 // Remove from the set of requests currently being processed. 277 synchronized (mCurrentRequests) { 278 mCurrentRequests.remove(request); 279 } 280 synchronized (mFinishedListeners) { 281 for (RequestFinishedListener<T> listener : mFinishedListeners) { 282 listener.onRequestFinished(request); 283 } 284 } 285 286 if (request.shouldCache()) { 287 synchronized (mWaitingRequests) { 288 String cacheKey = request.getCacheKey(); 289 Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey); 290 if (waitingRequests != null) { 291 if (VolleyLog.DEBUG) { 292 VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.", 293 waitingRequests.size(), cacheKey); 294 } 295 // Process all queued up requests. They won't be considered as in flight, but 296 // that's not a problem as the cache has been primed by 'request'. 297 mCacheQueue.addAll(waitingRequests); 298 } 299 } 300 } 301 } 302 303 public <T> void addRequestFinishedListener(RequestFinishedListener<T> listener) { 304 synchronized (mFinishedListeners) { 305 mFinishedListeners.add(listener); 306 } 307 } 308 309 /** 310 * Remove a RequestFinishedListener. Has no effect if listener was not previously added. 311 */ 312 public <T> void removeRequestFinishedListener(RequestFinishedListener<T> listener) { 313 synchronized (mFinishedListeners) { 314 mFinishedListeners.remove(listener); 315 } 316 } 317 }
1.
其实RequestQueue里面有两个队列,一个我称为缓存队列mCacheQueue,一个称为网络队列mNetworkQueue
如果请求要求加入缓存队列(例如我们给request设置一个属性ShouldCache,然后提供set方法来设置),将会试图从硬盘缓存中获取数据,如果没有缓存,这个请求将被放入网络队列
如果请求不要求缓存,则直接加入网络队列。
加入队列以后,我们开启线程,从队列中取出请求。
可想而知,我们最好有一个线程CacheDispatcher从缓存队列中取,一个NetworkDispatcher从网络队列中取,然而网络请求往往大量,所以volley实际上有多个线程同时从网络队列中取出请求(这里涉及线程同步,volley使用PriorityBlockingQueue解决)
为什么要先建立几个线程,从队列中取,而不是每个request开启一个线程呢?这样做的好处是避免重复大量创建线程所带来的开销,另外由于所有的request都存在在一个RequestQueue里面,便于我们对request的管理,例如我们要关闭某个request,又或者我们请求了很多相同的request,对应这些操作,我们如果将request分散,是很难统一解决的,所以这样用类似线程池的思想,统一管理线程。
同时,这样做又会带来不利,因为实际请求线程的线程数目是固定的,意味着当request数目大于线程数目时,有的线程将被阻塞,造成效率下降,更多的问题,会在接下来的文章提到。
至于CacheDispatcher和NetworkDispatcher是怎么请求数据的呢?
对于NetworkDispatcher而言,必然是开启网络连接,然后获取数据的(例如url.openConnection),这是我们的常用实现,先不做详细解释(volley对这些实现进行了更详细的封装)
再来考虑,获得结果以后,我们怎么回调。
还是面向对象的思路,volley将响应结果封装成一个repsonse类(和request对应)
对应NetworkDispatcher而言,在它的run()方法里面,取得request以后,根据url请求数据,将数据封装成respsonse对象,再有一个分发器ResponseDelivery分发到对应的request
有人会问?解析到response以后,我们给request设计一个方法(例如将parseRespose(Respsonse respsonse))用于使用response,同时在这个方法内,回调监听器不就好了吗?为什么要多此一举,创建一个分发器呢?
原因是这样更灵活,但是还有一个重要的原因是,注意到我们回调,往往是在主线程中进行的(因为很可能要操作UI),如果我们在NetworkDispatcher(子线程)里面,直接回调,可能造成错误,这是ResponseDelivery存在的另外一个原因。
根据上面的结论,最后来看一张简单的流程图
根据流程分析,我们可以体会到,volley设计框架的基本思路,对比于我们简单的实现,volley的实现方式耦合更加松散,使用面向接口编程,同时使用更多组合方式而不是继承。使用了代理等设计模式,同时提高了线程的利用率。总之volley的架构设计又各种各样的好处。
我在这里介绍几个volley的功能,以及它考虑到的,而我们很可能没有考虑到的问题。这些问题或者说功能上的优势,会伴随着本专栏的深入让大家逐渐体会。
下面从源码角度看RequestQueue类,首先当然是属性
1 /** 2 * A request dispatch queue with a thread pool of dispatchers. 3 * 4 * Calling {@link #add(Request)} will enqueue the given Request for dispatch, 5 * resolving from either cache or network on a worker thread, and then delivering 6 * a parsed response on the main thread. 7 * 一个拥有线程池的请求队列 8 * 调用add()分发,将添加一个用于分发的请求 9 * worker线程从缓存或网络获取响应,然后将该响应提供给主线程 10 */ 11 public class RequestQueue { 12 13 /** 14 * Callback interface for completed requests. 15 * 任务完成的回调接口 16 */ 17 public static interface RequestFinishedListener<T> { 18 /** Called when a request has finished processing. */ 19 public void onRequestFinished(Request<T> request); 20 } 21 22 /** 23 * Used for generating monotonically-increasing sequence numbers for requests. 24 * 使用原子类,记录队列中当前的请求数目 25 */ 26 private AtomicInteger mSequenceGenerator = new AtomicInteger(); 27 28 /** 29 * Staging area for requests that already have a duplicate request in flight.<br> 30 * 等候缓存队列,重复请求集结map,每个queue里面都是相同的请求 31 * <ul> 32 * <li>containsKey(cacheKey) indicates that there is a request in flight for the given cache 33 * key.</li> 34 * <li>get(cacheKey) returns waiting requests for the given cache key. The in flight request 35 * is <em>not</em> contained in that list. Is null if no requests are staged.</li> 36 * </ul> 37 * 如果map里面包含该请求的cachekey,说明已经有相同key的请求在执行 38 * get(cacheKey)根据cachekey返回对应的请求 39 */ 40 private final Map<String, Queue<Request<?>>> mWaitingRequests = 41 new HashMap<String, Queue<Request<?>>>(); 42 43 /** 44 * The set of all requests currently being processed by this RequestQueue. A Request 45 * will be in this set if it is waiting in any queue or currently being processed by 46 * any dispatcher. 47 * 队列当前拥有的所以请求的集合 48 * 请求在队列中,或者正被调度,都会在这个集合中 49 */ 50 private final Set<Request<?>> mCurrentRequests = new HashSet<Request<?>>(); 51 52 /** 53 * The cache triage queue. 54 * 缓存队列 55 */ 56 private final PriorityBlockingQueue<Request<?>> mCacheQueue = 57 new PriorityBlockingQueue<Request<?>>(); 58 59 /** 60 * The queue of requests that are actually going out to the network. 61 * 网络队列,有阻塞和fifo功能 62 */ 63 private final PriorityBlockingQueue<Request<?>> mNetworkQueue = 64 new PriorityBlockingQueue<Request<?>>(); 65 66 /** 67 * Number of network request dispatcher threads to start. 68 * 默认用于调度的线程池数目 69 */ 70 private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4; 71 72 /** 73 * Cache interface for retrieving and storing responses. 74 * 缓存 75 */ 76 private final Cache mCache; 77 78 /** 79 * Network interface for performing requests. 80 * 执行请求的网络 81 */ 82 private final Network mNetwork; 83 84 /** Response delivery mechanism. */ 85 private final ResponseDelivery mDelivery; 86 87 /** 88 * The network dispatchers. 89 * 该队列的所有网络调度器 90 */ 91 private NetworkDispatcher[] mDispatchers; 92 93 /** 94 * The cache dispatcher. 95 * 缓存调度器 96 */ 97 private CacheDispatcher mCacheDispatcher; 98 99 /** 100 * 任务完成监听器队列 101 */ 102 private List<RequestFinishedListener> mFinishedListeners = 103 new ArrayList<RequestFinishedListener>();
属性很多,而且耦合的类也比较多,我挑重要的讲,这里大家只要先记住某个属性是什么就可以,至于它的具体实现我们先不管
1,首先看List<RequestFinishedListener> mFinishedListeners任务完成监听器队列,这个队列保留了很多监听器,这些监听器都是监听RequestQueue请求队列的,而不是监听单独的某个请求。RequestQueue中每个请求完成后,都会回调这个监听队列里面的所有监听器。这是RequestQueue的统一管理的体现。
2,AtomicInteger mSequenceGenerator原子类,对java多线程熟悉的朋友应该知道,这个是为了线程安全而创造的类,不了解的朋友,可以把它认识是int类型,用于记录当前队列中的请求数目
3,PriorityBlockingQueue<Request<?>> mCacheQueue缓存队列,用于存放向请求缓存的request,线程安全,有阻塞功能,也就是说当队列里面没有东西的时候,线程试图从队列取请求,这个线程就会阻塞
4,PriorityBlockingQueue<Request<?>> mNetworkQueue网络队列,用于存放准备发起网络请求的request,功能同上
5,CacheDispatcher mCacheDispatcher缓存调度器,继承了Thread类,本质是一个线程,这个线程将会被开启进入一个死循环,不断从mCacheQueue缓存队列取出请求,然后去缓存Cache中查找结果
6,NetworkDispatcher[] mDispatchers网络调度器数组,继承了Thread类,本质是多个线程,所以线程都将被开启进入死循环,不断从mNetworkQueue网络队列取出请求,然后去网络Network请求数据
7,Set<Request<?>> mCurrentRequests记录队列中的所有请求,也就是上面mCacheQueue缓存队列与mNetworkQueue网络队列的总和,用于统一管理
8,Cache mCache缓存对象,面向对象的思想,把缓存看成一个实体
9,Network mNetwork网络对象,面向对象的思想,把网络看成一个实体
10,ResponseDelivery mDelivery分发器,就是这个分发器,负责把响应发给对应的请求,分发器存在的意义之前已经提到了,主要是为了耦合更加送并且能在主线程中操作UI
11,Map<String, Queue<Request<?>>> mWaitingRequests等候缓存队列,重复请求集结map,每个queue里面都是相同的请求。为什么需要这个map呢?map的key其实是request的url,如果我们有多个请求的url都是相同的,也就是说请求的资源是相同的,volley就把这些请求放入一个队列,在用url做key将队列放入map中。
因为这些请求都是相同的,可以说结果也是相同的。那么我们只要获得一个请求的结果,其他相同的请求,从缓存中取就可以了。
所以等候缓存队列的作用就是,当其中的一个request获得响应,我们就将这个队列放入缓存队列mCacheQueue中,让这些request去缓存获取结果就好了。
这是volley处理重复请求的思路。
其实看懂上面的属性就可以了解RequestQueue类的作用,大家结合上面的属性,看一下流程图
ok,我们还是从构造函数开始看起吧
/** * Creates the worker pool. Processing will not begin until {@link #start()} is called. * 创建一个工作池,在调用start()方法以后,开始执行 * @param cache A Cache to use for persisting responses to disk * @param network A Network interface for performing HTTP requests * @param threadPoolSize Number of network dispatcher threads to create * @param delivery A ResponseDelivery interface for posting responses and errors */ public RequestQueue(Cache cache, Network network, int threadPoolSize, ResponseDelivery delivery) { mCache = cache;//缓存,用于保留响应到硬盘 mNetwork = network;//网络接口,用于执行http请求 mDispatchers = new NetworkDispatcher[threadPoolSize];//根据线程池大小,创建调度器数组 mDelivery = delivery;//一个分发接口,用于响应和错误 } /** * Creates the worker pool. Processing will not begin until {@link #start()} is called. * * @param cache A Cache to use for persisting responses to disk * @param network A Network interface for performing HTTP requests * @param threadPoolSize Number of network dispatcher threads to create */ public RequestQueue(Cache cache, Network network, int threadPoolSize) { this(cache, network, threadPoolSize, new ExecutorDelivery(new Handler(Looper.getMainLooper()))); }
对于RequestQueue来说,必须有的参数是缓存,网络,分发器,网络线程的数目
对应上面的属性可以知道,原来这些东西都是外部传进来的,参照本专栏的开篇,可以知道,是在Volley这个类里面传进来的,同时在外部,我们也是通过Volley.newRequestQueue()方法来创建并且开启queue队列的。
紧接着来看start()方法,这个方法用于启动队列
1 /** 2 * Starts the dispatchers in this queue. 3 */ 4 public void start() { 5 stop(); //保证当前所有运行的分发停止 Make sure any currently running dispatchers are stopped. 6 // Create the cache dispatcher and start it. 7 //创建新的缓存调度器,并且启动它 8 mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery); 9 mCacheDispatcher.start(); 10 11 // Create network dispatchers (and corresponding threads) up to the pool size. 12 //创建网络调度器,并且启动它们 13 for (int i = 0; i < mDispatchers.length; i++) { 14 NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork, 15 mCache, mDelivery); 16 mDispatchers[i] = networkDispatcher; 17 networkDispatcher.start(); 18 }
可以看到,所谓启动队列,就是创建了CacheDispatcher缓存调度器,和mDispatchers[]网络调度器数组,根据前面的介绍我们知道,它们都是线程,所以start()方法里面,其实就是调用了它们的start()方法。也就是说RequestQueue启动的本质,是这些调度器的启动,这些调度器启动以后,会进入死循环,不断从队列中取出request来进行数据请求。
由于Dispatcher调度器的数目有限(是根据我们给构造方法传入的参数threadPoolSize决定的),意味着Volley框架,同时在执行数据请求的线程数目是有限的,这样避免了重复创建线程所带来的开销,同时可能会带来效率的下降。
所以threadPoolSize对不同的应用,设置的大小大家不同,大家要根据自己项目实际情况,经过测试来确定这个值。
说完开启,我们再来看RequestQueue的关闭
1 /** 2 * Stops the cache and network dispatchers. 3 * 停止调度器(包括缓存和网络) 4 */ 5 public void stop() { 6 if (mCacheDispatcher != null) { 7 mCacheDispatcher.quit(); 8 } 9 for (int i = 0; i < mDispatchers.length; i++) { 10 if (mDispatchers[i] != null) { 11 mDispatchers[i].quit(); 12 } 13 } 14 }
对比开启,其实stop()的本质也是关闭所有的调度器,调用了它们的quit()方法,至于这个方法做的是什么,很容易想到,是把它们内部while循环的标志设成false
再来看add()方法,这方法用于将request加入队列,也是一个非常重要方法
1 /** 2 * Adds a Request to the dispatch queue. 3 * @param request The request to service 4 * @return The passed-in request 5 * 向请求队列添加请求 6 */ 7 public <T> Request<T> add(Request<T> request) { 8 // Tag the request as belonging to this queue and add it to the set of current requests. 9 request.setRequestQueue(this);//为请求设置其请求队列 10 synchronized (mCurrentRequests) { 11 mCurrentRequests.add(request); 12 } 13 14 // Process requests in the order they are added. 15 request.setSequence(getSequenceNumber());//设置请求序号 16 request.addMarker("add-to-queue"); 17 18 // If the request is uncacheable, skip the cache queue and go straight to the network. 19 //如果该请求不缓存,添加到网络队列 20 if (!request.shouldCache()) { 21 mNetworkQueue.add(request); 22 return request; 23 } 24 //如果该请求要求缓存 25 // Insert request into stage if there's already a request with the same cache key in flight. 26 synchronized (mWaitingRequests) { 27 String cacheKey = request.getCacheKey(); 28 if (mWaitingRequests.containsKey(cacheKey)) { 29 // There is already a request in flight. Queue up. 30 //如果已经有一个请求在工作,则排队等候 31 Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey); 32 if (stagedRequests == null) { 33 stagedRequests = new LinkedList<Request<?>>(); 34 } 35 stagedRequests.add(request); 36 mWaitingRequests.put(cacheKey, stagedRequests); 37 if (VolleyLog.DEBUG) { 38 VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey); 39 } 40 } else { 41 // Insert 'null' queue for this cacheKey, indicating there is now a request in 42 // flight. 43 //为该key插入null,表明现在有一个请求在工作 44 mWaitingRequests.put(cacheKey, null); 45 mCacheQueue.add(request); 46 } 47 return request; 48 } 49 }
对于一个request而言,首先它会被加入mCurrentRequests,这是用于request的统一管理
然后,调用shouldCache()判断是从缓存中取还是网络请求,如果是网络请求,则加入mNetworkQueue,然后改方法返回
如果请求缓存,根据mWaitingRequests是否已经有相同的请求在进行,如果是,则将该request加入mWaitingRequests
如果不是,则将request加入mCacheQueue去进行缓存查询
到目前为止,我们知道了调度器会从队列里面拿请求,至于具体是怎么请求的,我们还不清楚。这也体现了volley设计的合理性,通过组合来分配各个职责,每个类的职责都比较单一。
我们提到,RequestQueue的一个重要作用,就是对request的统一管理,其实所谓的管理,更多是对request的关闭,下面我来看一下这些方法
1 /** 2 * Called from {@link Request#finish(String)}, indicating that processing of the given request 3 * has finished. 4 * 在request类的finish()方法里面,会调用这个方法,说明该请求结束 5 * <p>Releases waiting requests for <code>request.getCacheKey()</code> if 6 * <code>request.shouldCache()</code>.</p> 7 */ 8 public <T> void finish(Request<T> request) { 9 // Remove from the set of requests currently being processed. 10 synchronized (mCurrentRequests) {//从当前请求队列中移除 11 mCurrentRequests.remove(request); 12 } 13 synchronized (mFinishedListeners) {//回调监听器 14 for (RequestFinishedListener<T> listener : mFinishedListeners) { 15 listener.onRequestFinished(request); 16 } 17 } 18 19 if (request.shouldCache()) {//如果该请求要被缓存 20 synchronized (mWaitingRequests) { 21 String cacheKey = request.getCacheKey(); 22 Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey);//移除该缓存 23 if (waitingRequests != null) {//如果存在缓存等候队列 24 if (VolleyLog.DEBUG) { 25 VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.", 26 waitingRequests.size(), cacheKey); 27 } 28 // Process all queued up requests. They won't be considered as in flight, but 29 // that's not a problem as the cache has been primed by 'request'. 30 // 处理所有队列中的请求 31 mCacheQueue.addAll(waitingRequests);// 32 } 33 } 34 } 35 }
finish()用于表示某个特定的request完成了,只有将要完成的request传进来就好了,然后会在各个队列中移除它
这里需要注意,一个request完成以后,会将waitingRequests里面所有相同的请求,都加入到mCacheQueue缓存队列中,这就意味着,这些请求从缓存中取出结果就好了,这样就避免了频繁相同网络请求的开销。这也是Volley的亮点之一。
然后我们再来看一些取消方法
1 /** 2 * A simple predicate or filter interface for Requests, for use by 3 * {@link RequestQueue#cancelAll(RequestFilter)}. 4 * 一个简单的过滤接口,在cancelAll()方法里面被使用 5 */ 6 public interface RequestFilter { 7 public boolean apply(Request<?> request); 8 } 9 10 /** 11 * Cancels all requests in this queue for which the given filter applies. 12 * @param filter The filtering function to use 13 * 根据过滤器规则,取消相应请求 14 */ 15 public void cancelAll(RequestFilter filter) { 16 synchronized (mCurrentRequests) { 17 for (Request<?> request : mCurrentRequests) { 18 if (filter.apply(request)) { 19 request.cancel(); 20 } 21 } 22 } 23 } 24 25 /** 26 * Cancels all requests in this queue with the given tag. Tag must be non-null 27 * and equality is by identity. 28 * 根据标记取消相应请求 29 */ 30 public void cancelAll(final Object tag) { 31 if (tag == null) { 32 throw new IllegalArgumentException("Cannot cancelAll with a null tag"); 33 } 34 cancelAll(new RequestFilter() { 35 @Override 36 public boolean apply(Request<?> request) { 37 return request.getTag() == tag; 38 } 39 }); 40 }
上面的设计可以说是非常巧妙的,为了增加取消的灵活性,创建了一个RequestFilter来自定义取消request的规则
在cancelAll(RequestFilter filter)方法里面,我们传入过滤器,就可以根据需要取消我想要取消的一类request,这种形式类似文件遍历的FileFilter
而这种形式,volley还为我们提供了一个具体的实现cancelAll(final Object tag),来根据标签取消request,这里我们也就明白了request<T>类中mTag属性的用处了
可以说volley处处都体现了设计模式的美感。
Ok,RequestQueue介绍到这里,就介绍了整个的基本结构,剩下的困惑,是CacheDispatcher,networkDispatcher怎么从队列里面取出request的问题了,但是这些问题跟队列的关系没有那么紧,也就是说具体实现的任务,又交到了这两个类的身上,总而言之,这里也体现了单一责任原则。
接下来的文章,将会分类讲述这两个功能的实现。