【题目大意】
给出$n$个数$a_1, a_2, ..., a_n$,求有多少个区间$[l, r]$,满足每个数都出现了奇数次。
$1 leq n leq 2 * 10^5, 0 leq a_i leq 10^6$
【题解】
稳爷爷出的noi模拟题(原题来自某地区ioi选拔赛)
给每个数赋一个随机权值$H_x$,那么问题转化为:
有多少个区间,使得区间内的数的异或和=区间内出现过的数的异或和。
这是可以分块的,记$lst_i$表示数$i$上一次出现的位置,令$x = H_{a_i}$那么每次就是给$[1, lst_x]$异或一个数,并且询问$[1, i]$中为0的数的个数。
分块+map可以做到$O(nsqrt{nlogn})$。但是会被卡。
分块+hash就能做到$O(nsqrt{n})$了,把hash表的取模开到1000~3000较优。每次暴力就重构一次。重构的时空复杂度是正确的。
# include <map> # include <vector> # include <stdio.h> # include <string.h> # include <iostream> # include <algorithm> // # include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; const int N = 2e5 + 10, M = 1e6 + 10, NB = 500 + 5; const int mod = 1e9+7, BLOCK = 400; const int MOD = 2339; int n, m, B, a[N], bl[N], L[N], R[N]; vector<int> ps; ull H[N]; int lst[N]; struct hasher { int head[MOD + 5], w[MOD + 5], nxt[MOD + 5], tot, id, hid[MOD + 5]; ull to[MOD + 5]; inline void set() { tot = 0; id = 0; memset(head, 0, sizeof head); memset(hid, 0, sizeof hid); } inline void reset() { tot = 0; ++id; } inline void add(int u, ull v, int _w) { ++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v; w[tot] = _w; } inline void init(int L, int R) { add(0, 0, R-L+1); } inline int bg(int x) { if(hid[x] == id) return head[x]; else { hid[x] = id; return head[x] = 0; } } inline void ins(ull x) { int hx = x % MOD; for (int i=bg(hx); i; i=nxt[i]) if(to[i] == x) { ++w[i]; return ; } add(hx, x, 1); } inline int query(ull x) { int hx = x % MOD; for (int i=bg(hx); i; i=nxt[i]) if(to[i] == x) return w[i]; return 0; } }solver[NB]; inline ull irand() { ull ret = 0; for (int i=1; i<=8; ++i) ret = (ret << 15) + rand(); return ret; } ull tag[NB], c[N]; inline void dealxor(int x, ull v) { if(!x) return ; int p = bl[x]; for (int i=1; i<p; ++i) tag[i] ^= v; solver[p].reset(); for (int i=L[p]; i<=x; ++i) { c[i] ^= v; solver[p].ins(c[i]); } for (int i=x+1; i<=R[p]; ++i) solver[p].ins(c[i]); } inline int query(int x) { int p = bl[x], ret = 0; for (int i=1; i<p; ++i) ret += solver[i].query(tag[i]); for (int i=L[p]; i<=x; ++i) if(c[i] == tag[p]) ++ret; return ret; } int main() { // freopen("odd2.in", "r", stdin); cin >> n; for (int i=1; i<=n; ++i) { scanf("%d", a+i); ps.push_back(a[i]); } sort(ps.begin(), ps.end()); ps.erase(unique(ps.begin(), ps.end()), ps.end()); m = ps.size(); for (int i=1; i<=n; ++i) a[i] = lower_bound(ps.begin(), ps.end(), a[i]) - ps.begin() + 1; for (int i=1; i<=m; ++i) H[i] = irand(); for (int i=1; i<=n; ++i) bl[i] = (i-1)/BLOCK + 1; B = bl[n]; for (int i=1; i<=B; ++i) L[i] = (i-1) * BLOCK + 1, R[i] = i * BLOCK; R[B] = min(R[B], n); for (int i=1; i<=B; ++i) solver[i].set(), solver[i].init(L[i], R[i]); ll ans = 0; for (int i=1; i<=n; ++i) { int pre = lst[a[i]]; lst[a[i]] = i; // cerr << i << ' ' << pre << endl; dealxor(pre, H[a[i]]); ans += query(i); } cout << ans; return 0; } /* 4 2 2 2 3 Ans = 7 */