• bzoj4873 [Shoi2017]寿司餐厅


    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4873

    【题解】

    没看出来是最大权闭合子图模型……要多学习学习qwq

    首先区间$[i,j]$依赖于区间$[i+1,j]$和$[i,j-1]$。每个区间$[i,j](i < j)$的权值就是$d_{i,j}$。

    特别地,区间$[i, i]$的权值为$d_{i,j} - a_i$(由于花费原因)。

    区间$[i, i]$还依赖于$a_i$这个点,$a_i$这个点的权值为$-m * a_i * a_i$(花费)。

    然后直接跑最大权闭合子图模型即可。

    时间复杂度O(能过)。

    这个区间建模有点意思,看来知识水平不够高啊qwq

    # include <queue>
    # include <stdio.h>
    # include <string.h>
    # include <iostream>
    # include <algorithm>
    // # include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    const int M = 8e5 + 10, N = 1e2 + 10;
    const int mod = 1e9+7;
    const ll inf = 1e16;
    
    
    int n, K, idx, S, T;
    ll sum = 0;
    vector<int> ps;
    int a[N], d[N][N], id[N][N], bid[N * 10]; 
    
    namespace MF {
        int head[M], nxt[M], to[M], tot = 1;
        ll flow[M]; 
        inline void add(int u, int v, ll fl) {
            ++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v; flow[tot] = fl;
        }
        inline void adde(int u, int v, ll fl) {
            add(u, v, fl), add(v, u, 0ll);
        }
        queue<int> q; int c[M], cur[M];
        inline bool bfs() {
             while(!q.empty()) q.pop();
            for (int i=1; i<=idx; ++i) c[i] = -1;
            c[S] = 0; q.push(S);
            while(!q.empty()) {
                int top = q.front(); q.pop();
                for (int i=head[top]; i; i=nxt[i]) {
                    if(c[to[i]] != -1 || !flow[i]) continue;
                    c[to[i]] = c[top] + 1;
                    q.push(to[i]);
                    if(to[i] == T) return 1;
                }
            }
            return 0;
        }
        inline ll dfs(int x, ll low) {
            if(x == T) return low;
            ll r = low, fl;
            for (int i=cur[x]; i; i=nxt[i]) {
                 if(c[to[i]] != c[x] + 1 || !flow[i]) continue;
                fl = dfs(to[i], min(r, flow[i]));
                flow[i] -= fl; r -= fl; flow[i^1] += fl;
                if(flow[i] > 0) cur[x] = i;
                if(!r) return low;
            }
            if(low == r) c[x] = -1;
            return low-r;
        }
        inline ll main() {
            ll ret = 0;
            while(bfs()) {
                for (int i=1; i<=idx; ++i) cur[i] = head[i];
                ret += dfs(S, inf);
            }
            return ret;
        }    
    }
    
    inline void add(int u, ll d) {
        if(d >= 0) MF :: adde(S, u, d), sum += d; 
        else MF :: adde(u, T, -d);
    }
    
    int main() {
        cin >> n >> K;
        for (int i=1; i<=n; ++i) {
            scanf("%d", &a[i]);
            ps.push_back(a[i]);
        }
        S = ++idx, T = ++idx;
        for (int i=1; i<=n; ++i)
            for (int j=i; j<=n; ++j) {
                scanf("%d", &d[i][j]);
                id[i][j] = ++idx;
                if(i == j) d[i][j] -= a[i]; 
            }
        
        for (int i=1; i<=n; ++i) 
            for (int j=i; j<=n; ++j) 
                add(id[i][j], d[i][j]);
                 
        sort(ps.begin(), ps.end()); 
        ps.erase(unique(ps.begin(), ps.end()), ps.end());
         
        for (int i=0; i<ps.size(); ++i) {
            bid[ps[i]] = ++idx;
            add(bid[ps[i]], -1ll * K * ps[i] * ps[i]); 
        }
        
        for (int i=1; i<=n; ++i) { 
            for (int j=i+1; j<=n; ++j) {
                 MF :: adde(id[i][j], id[i+1][j], inf);
                MF :: adde(id[i][j], id[i][j-1], inf);
            }
            MF :: adde(id[i][i], bid[a[i]], inf);
        }
        
        cout << max(sum - MF :: main(), 0ll); 
             
        return 0;
    }
    View Code
  • 相关阅读:
    bash shell if 命令参数说明
    Linux test命令
    javascript获取事件触发源
    PHP Manual 学习
    js 控制iframe 刷新
    WP7交互特性浅析及APP设计探究
    FirstDayStart点点
    关于Safari的思考(转载)
    如何使控件背景色支持TransparentKey(at Win2k/WinXP 32bit Color Desktop)
    [Bug] VisualStyleRenderer may cause GDI leak!
  • 原文地址:https://www.cnblogs.com/galaxies/p/bzoj4873.html
Copyright © 2020-2023  润新知