【题目大意】
给一棵树,求有多少条路径满足总和-最大值 是P的倍数
n<=10^5, P<=10^7
【题解】
一看就是点分治嘛
不考虑子树合并,考虑poj1741的做法,每次考虑经过重心的路径,用优先队列,从小到达添加并求答案即可。
容斥下。
# include <queue> # include <stdio.h> # include <string.h> # include <iostream> # include <algorithm> // # include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; const int N = 1e5 + 10, M = 2e5 + 10, MAX = 1e7 + 5; const int mod = 1e9+7; # define RG register # define ST static int n, P, v[N]; int head[N], nxt[M], to[M], tot; inline void add(int u, int v) { ++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v; } inline void adde(int u, int v) { add(u, v), add(v, u); } namespace DFZ { bool vis[N]; int sz[N], mx[N]; inline void dfsSize(int x, int fa = 0) { sz[x] = 1, mx[x] = 0; for (int i=head[x]; i; i=nxt[i]) { if(to[i] == fa || vis[to[i]]) continue; dfsSize(to[i], x); sz[x] += sz[to[i]]; if(sz[to[i]] > mx[x]) mx[x] = sz[to[i]]; } } int mi, centre; inline void dfsCentre(int x, int tp, int fa = 0) { if(sz[tp] - sz[x] > mx[x]) mx[x] = sz[tp] - sz[x]; if(mx[x] < mi) mi = mx[x], centre = x; for (int i=head[x]; i; i=nxt[i]) { if(to[i] == fa || vis[to[i]]) continue; dfsCentre(to[i], tp, x); } } struct pa { int x, s, mx, fa; pa() {} pa(int x, int s, int mx, int fa) : x(x), s(s), mx(mx), fa(fa) {} friend bool operator < (pa a, pa b) { return a.mx > b.mx; } }; priority_queue<pa> q; int buc[MAX]; int st[M], stn; inline void delAns(int x, int s, int fa) { -- buc[s]; for (int i=head[x]; i; i=nxt[i]) { if(to[i] == fa || vis[to[i]]) continue; delAns(to[i], (s + v[to[i]]) % P, x); } } inline ll doit(int x, int temp_s, int temp_mx, int temp_fa, int Vx) { ll ret = 0; (temp_s += v[x]) %= P; temp_mx = max(temp_mx, v[x]); while(!q.empty()) q.pop(); stn = 0; q.push(pa(x, temp_s, temp_mx, temp_fa)); while(!q.empty()) { pa tp = q.top(); q.pop(); // tp.s + S - Vx - mx = 0 (mod P) // S = Vx + mx - tp.s ret += buc[((tp.mx + Vx - tp.s) % P + P) % P]; ++ buc[tp.s]; st[++stn] = tp.s; for (int i=head[tp.x]; i; i=nxt[i]) { if(to[i] == tp.fa || vis[to[i]]) continue; q.push(pa(to[i], (tp.s + v[to[i]]) % P, max(tp.mx, v[to[i]]), tp.x)); } } for (int i=stn; i; --i) -- buc[st[i]]; return ret; } ll ans; inline void dfs(int x) { dfsSize(x); mi = n; dfsCentre(x, x); x = centre; // ===== // // printf("x = %d ", x); ans += doit(x, 0, 0, 0, v[x]); // ===== // vis[x] = 1; for (int i=head[x]; i; i=nxt[i]) if(!vis[to[i]]) { ans -= doit(to[i], v[x], v[x], x, v[x]); dfs(to[i]); } } inline void main() { ans = 0; dfs(1); ans += n; cout << ans << endl; } } int main() { freopen("c.in", "r", stdin); freopen("c.out", "w", stdout); cin >> n >> P; for (int i=1, u, tv; i<n; ++i) { scanf("%d%d", &u, &tv); adde(u, tv); } for (int i=1; i<=n; ++i) scanf("%d", v+i); DFZ::main(); return 0; } /* 5 2 1 2 1 3 2 4 3 5 1 3 3 1 2 */