参考:
https://www.jianshu.com/p/fce000cf4c0f
前提:
nvidia-docker cuda
镜像
$ nvidia-docker run -it -p 8888:8888 tensorflow/tensorflow:latest-gpu
##持久
nvidia-docker run -e PASSWORD=your_jupyter_passwd # set password
-d # run as daemon
-p 8888:8888 # port binding
--name tensorflow
-v /data/dir/on/host/:/data/ # bind data volume
tensorflow/tensorflow:latest-gpu
接上:
修改Jupyter默认启动的terminal所使用的shell
使用的镜像的主进程是Jupyter,修改Jupyter默认启动terminal所使用的shell,最简单的方法是在此脚本中设置SHELL环境变量。通过Jupyter启动terminal或者是docker exec -it tensorflow bash的方法进入容器,然后编辑/run_jupyter.sh,在jupyer notebook "$@"之前添加
export SHELL=/bin/bash
使用anaconda
##1,在容器内安装Anaconda
##2,编辑/run_jupyter.sh
jupyter notebook "$@" 改为:/path/to/anaconda/bin/jupyter notebook "$@"
测试jupyter 是否使用gpu
参考: https://blog.paperspace.com/jupyter-notebook-with-a-gpu-the-easy-way/
启动的tensflow
sudo nvidia-docker run --rm --name tf-notebook -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu jupyter notebook --allow-root
You can confirm that the GPU is working by opening a notebook and typing:
from tensorflow.python.client import device_lib
def get_available_devices():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos]
print(get_available_devices())
tensorflow dockerfile
https://github.com/tensorflow/tensorflow/tree/60b4151cdd388856601fedb2f0991f4fa844f0fc/tensorflow/tools/dockerfiles/dockerfiles
https://github.com/tensorflow/tensorflow/tree/60b4151cdd388856601fedb2f0991f4fa844f0fc/tensorflow/tools/dockerfiles
dockerfile示例:
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#
# THIS IS A GENERATED DOCKERFILE.
#
# This file was assembled from multiple pieces, whose use is documented
# throughout. Please refer to the TensorFlow dockerfiles documentation
# for more information.
ARG UBUNTU_VERSION=18.04
ARG ARCH=
ARG CUDA=10.1
FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
# ARCH and CUDA are specified again because the FROM directive resets ARGs
# (but their default value is retained if set previously)
ARG ARCH
ARG CUDA
ARG CUDNN=7.6.4.38-1
ARG CUDNN_MAJOR_VERSION=7
ARG LIB_DIR_PREFIX=x86_64
ARG LIBNVINFER=6.0.1-1
ARG LIBNVINFER_MAJOR_VERSION=6
# Needed for string substitution
SHELL ["/bin/bash", "-c"]
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends
build-essential
cuda-command-line-tools-${CUDA/./-}
# There appears to be a regression in libcublas10=10.2.2.89-1 which
# prevents cublas from initializing in TF. See
# https://github.com/tensorflow/tensorflow/issues/9489#issuecomment-562394257
libcublas10=10.2.1.243-1
cuda-nvrtc-${CUDA/./-}
cuda-cufft-${CUDA/./-}
cuda-curand-${CUDA/./-}
cuda-cusolver-${CUDA/./-}
cuda-cusparse-${CUDA/./-}
curl
libcudnn7=${CUDNN}+cuda${CUDA}
libfreetype6-dev
libhdf5-serial-dev
libzmq3-dev
pkg-config
software-properties-common
unzip
# Install TensorRT if not building for PowerPC
RUN [[ "${ARCH}" = "ppc64le" ]] || { apt-get update &&
apt-get install -y --no-install-recommends libnvinfer${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA}
libnvinfer-plugin${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA}
&& apt-get clean
&& rm -rf /var/lib/apt/lists/*; }
# For CUDA profiling, TensorFlow requires CUPTI.
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
# dynamic linker run-time bindings
RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1
&& echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf
&& ldconfig
ARG USE_PYTHON_3_NOT_2
# TODO(angerson) Completely remove Python 2 support
ARG _PY_SUFFIX=${USE_PYTHON_3_NOT_2:+3}
ARG PYTHON=python${_PY_SUFFIX}
ARG PIP=pip${_PY_SUFFIX}
# See http://bugs.python.org/issue19846
ENV LANG C.UTF-8
RUN apt-get update && apt-get install -y
${PYTHON}
${PYTHON}-pip
RUN ${PIP} --no-cache-dir install --upgrade
pip
setuptools
# Some TF tools expect a "python" binary
RUN ln -s $(which ${PYTHON}) /usr/local/bin/python
# Options:
# tensorflow
# tensorflow-gpu
# tf-nightly
# tf-nightly-gpu
# Set --build-arg TF_PACKAGE_VERSION=1.11.0rc0 to install a specific version.
# Installs the latest version by default.
ARG TF_PACKAGE=tensorflow
ARG TF_PACKAGE_VERSION=
RUN ${PIP} install ${TF_PACKAGE}${TF_PACKAGE_VERSION:+==${TF_PACKAGE_VERSION}}
COPY bashrc /etc/bash.bashrc
RUN chmod a+rwx /etc/bash.bashrc
RUN ${PIP} install jupyter matplotlib
# Pin ipykernel and nbformat; see https://github.com/ipython/ipykernel/issues/422
RUN if [[ "${USE_PYTHON_3_NOT_2}" == "1" ]]; then ${PIP} install ipykernel==5.1.1 nbformat==4.4.0; fi
RUN ${PIP} install jupyter_http_over_ws
RUN jupyter serverextension enable --py jupyter_http_over_ws
RUN mkdir -p /tf/tensorflow-tutorials && chmod -R a+rwx /tf/
RUN mkdir /.local && chmod a+rwx /.local
RUN apt-get install -y --no-install-recommends wget
WORKDIR /tf/tensorflow-tutorials
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/classification.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/overfit_and_underfit.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/regression.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/save_and_load.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/text_classification.ipynb
RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/text_classification_with_hub.ipynb
COPY readme-for-jupyter.md README.md
RUN apt-get autoremove -y && apt-get remove -y wget
WORKDIR /tf
EXPOSE 8888
RUN ${PYTHON} -m ipykernel.kernelspec
CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root"]
测试使用gpu
import tensorflow as tf
import timeit
with tf.device('/cpu:0'):
cpu_a = tf.random.normal([10000, 1000])
cpu_b = tf.random.normal([1000, 2000])
print(cpu_a.device, cpu_b.device)
with tf.device('/gpu:0'):
gpu_a = tf.random.normal([10000, 1000])
gpu_b = tf.random.normal([1000, 2000])
print(gpu_a.device, gpu_b.device)
def cpu_run():
with tf.device('/cpu:0'):
c = tf.matmul(cpu_a, cpu_b)
return c
def gpu_run():
with tf.device('/gpu:0'):
c = tf.matmul(gpu_a, gpu_b)
return c
# warm up
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('warmup:', cpu_time, gpu_time)
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('run time:', cpu_time, gpu_time)
###########################
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)
print('GPU:', tf.test.is_gpu_available())
tensorflow1.12+ 与tensorflow2.0的区别
两个版本tensorflow函数对照:
参考链接:
https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0
jupyter 设置密码
# 打开cmd,进入ipython交互环境
ipython
from notebook.auth import passwd
passwd()
# 在这里输入想要设置的登录JupyterLab 的密码 然后会有一串输出,复制下来,等会配置需要使用
修改 JupyterLab 配置文件:
jupyter lab --generate-config
修改以下
c.NotebookApp.allow_root = True
c.NotebookApp.open_browser = False
c.NotebookApp.password = '刚才复制的输出粘贴到这里来'
# 安装一个生成目录的插件
jupyter labextension install @jupyterlab/toc
# 可以查看一下安装的插件
jupyter labextension list
##链接
https://www.cnblogs.com/lskreno/p/10844315.html
官方镜像启动
nvidia-docker run -d --rm -p 3333:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter /bin/bash -c "jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root --NotebookApp.token='jupyterAdmin' "
ubuntu 编译安装python
https://yq.aliyun.com/articles/675910
如何构建包含TensorFlow/Python3/Jupyter的Docker
https://zhuanlan.zhihu.com/p/66278558 :这个启动需要token
ubuntu1604-cuda-cudnn-anaconda-jupyter-tensorflow
FROM nvidia/cuda:9.0-cudnn7-runtime-ubuntu16.04
ENV PATH /root/anaconda3/bin:$PATH
RUN apt update && apt install wget && apt install bzip2 && cd /
&& wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh
&& chmod +x /Anaconda3-5.2.0-Linux-x86_64.sh
&& ./Anaconda3-5.2.0-Linux-x86_64.sh -b
&& rm -rf ./Anaconda3-5.2.0-Linux-x86_64.sh
RUN pip install tensorflow-gpu==1.11.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
&& pip install jupyterlab
&& pip install msgpack
RUN echo 'import subprocess
import sys
subprocess.call("cd /", shell=True)
subprocess.call("jupyter lab --ip=0.0.0.0 --no-browser --allow-root --NotebookApp.allow_root=False --NotebookApp.token='jupyterAdmin' --notebook-dir=/home", shell=True)' >>/python_service.py
CMD ["python3","/python_service.py"]
FROM nvidia/cuda:9.0-cudnn7-runtime-ubuntu16.04
ENV PATH /root/anaconda3/bin:$PATH
RUN apt update && apt install wget && apt install bzip2 && cd /
&& wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh
&& chmod +x /Anaconda3-5.2.0-Linux-x86_64.sh
&& ./Anaconda3-5.2.0-Linux-x86_64.sh -b
&& rm -rf ./Anaconda3-5.2.0-Linux-x86_64.sh
RUN pip install tensorflow-gpu==1.11.0 -i https://pypi.douban.com/simple/
&& pip install msgpack -i https://pypi.douban.com/simple/
&& pip install jupyterlab
RUN echo 'import subprocess
import sys
subprocess.call("cd /", shell=True)
subprocess.call("jupyter lab --ip=0.0.0.0 --no-browser --allow-root --NotebookApp.allow_root=False --NotebookApp.token='jupyterAdmin' --notebook-dir=/home", shell=True)' >>/python_service.py
CMD ["python3","/python_service.py"]
FROM nvidia/cuda:9.0-cudnn7-runtime-ubuntu16.04
ENV PATH /root/anaconda3/bin:$PATH
RUN apt update && apt install wget && apt install bzip2 && cd /
&& wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh
&& chmod +x /Anaconda3-5.2.0-Linux-x86_64.sh
&& ./Anaconda3-5.2.0-Linux-x86_64.sh -b
&& rm -rf ./Anaconda3-5.2.0-Linux-x86_64.sh
RUN pip install tensorflow-gpu==1.11.0 -i https://pypi.douban.com/simple/
&& pip install msgpack -i https://pypi.douban.com/simple/
&& pip install jupyterlab
RUN echo 'import subprocess
import sys
subprocess.call("cd /", shell=True)
subprocess.call("jupyter lab --ip=0.0.0.0 --no-browser --allow-root --NotebookApp.allow_root=False --NotebookApp.token='jupyterAdmin' --notebook-dir=/home", shell=True)' >>/python_service.py
CMD ["python3","/python_service.py"]