• docker-Tensorflow-gpu+ Jupyter


    参考:
    https://www.jianshu.com/p/fce000cf4c0f
    前提:
    nvidia-docker cuda

    镜像

    $ nvidia-docker run -it -p 8888:8888 tensorflow/tensorflow:latest-gpu
    
    
    ##持久
    nvidia-docker run -e PASSWORD=your_jupyter_passwd  # set password
        -d   # run as daemon
        -p 8888:8888  # port binding
        --name tensorflow 
        -v /data/dir/on/host/:/data/  # bind data volume
        tensorflow/tensorflow:latest-gpu
    

    接上:
    修改Jupyter默认启动的terminal所使用的shell
    使用的镜像的主进程是Jupyter,修改Jupyter默认启动terminal所使用的shell,最简单的方法是在此脚本中设置SHELL环境变量。通过Jupyter启动terminal或者是docker exec -it tensorflow bash的方法进入容器,然后编辑/run_jupyter.sh,在jupyer notebook "$@"之前添加

    export SHELL=/bin/bash
    
    

    使用anaconda

    ##1,在容器内安装Anaconda
    ##2,编辑/run_jupyter.sh
    
    jupyter notebook "$@"  改为:/path/to/anaconda/bin/jupyter notebook "$@"
    
    

    测试jupyter 是否使用gpu

    参考: https://blog.paperspace.com/jupyter-notebook-with-a-gpu-the-easy-way/
    启动的tensflow

    sudo nvidia-docker run --rm --name tf-notebook -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu jupyter notebook --allow-root
    
    

    You can confirm that the GPU is working by opening a notebook and typing:

    from tensorflow.python.client import device_lib
    
    def get_available_devices():
        local_device_protos = device_lib.list_local_devices()
        return [x.name for x in local_device_protos]
    
    print(get_available_devices())
    
    
    

    tensorflow dockerfile

    https://github.com/tensorflow/tensorflow/tree/60b4151cdd388856601fedb2f0991f4fa844f0fc/tensorflow/tools/dockerfiles/dockerfiles
    https://github.com/tensorflow/tensorflow/tree/60b4151cdd388856601fedb2f0991f4fa844f0fc/tensorflow/tools/dockerfiles
    dockerfile示例:

    # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ============================================================================
    #
    # THIS IS A GENERATED DOCKERFILE.
    #
    # This file was assembled from multiple pieces, whose use is documented
    # throughout. Please refer to the TensorFlow dockerfiles documentation
    # for more information.
    
    ARG UBUNTU_VERSION=18.04
    
    ARG ARCH=
    ARG CUDA=10.1
    FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
    # ARCH and CUDA are specified again because the FROM directive resets ARGs
    # (but their default value is retained if set previously)
    ARG ARCH
    ARG CUDA
    ARG CUDNN=7.6.4.38-1
    ARG CUDNN_MAJOR_VERSION=7
    ARG LIB_DIR_PREFIX=x86_64
    ARG LIBNVINFER=6.0.1-1
    ARG LIBNVINFER_MAJOR_VERSION=6
    
    # Needed for string substitution
    SHELL ["/bin/bash", "-c"]
    # Pick up some TF dependencies
    RUN apt-get update && apt-get install -y --no-install-recommends 
            build-essential 
            cuda-command-line-tools-${CUDA/./-} 
            # There appears to be a regression in libcublas10=10.2.2.89-1 which
            # prevents cublas from initializing in TF. See
            # https://github.com/tensorflow/tensorflow/issues/9489#issuecomment-562394257
            libcublas10=10.2.1.243-1  
            cuda-nvrtc-${CUDA/./-} 
            cuda-cufft-${CUDA/./-} 
            cuda-curand-${CUDA/./-} 
            cuda-cusolver-${CUDA/./-} 
            cuda-cusparse-${CUDA/./-} 
            curl 
            libcudnn7=${CUDNN}+cuda${CUDA} 
            libfreetype6-dev 
            libhdf5-serial-dev 
            libzmq3-dev 
            pkg-config 
            software-properties-common 
            unzip
    
    # Install TensorRT if not building for PowerPC
    RUN [[ "${ARCH}" = "ppc64le" ]] || { apt-get update && 
            apt-get install -y --no-install-recommends libnvinfer${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} 
            libnvinfer-plugin${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} 
            && apt-get clean 
            && rm -rf /var/lib/apt/lists/*; }
    
    # For CUDA profiling, TensorFlow requires CUPTI.
    ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
    
    # Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
    # dynamic linker run-time bindings
    RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1 
        && echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf 
        && ldconfig
    
    ARG USE_PYTHON_3_NOT_2
    # TODO(angerson) Completely remove Python 2 support
    ARG _PY_SUFFIX=${USE_PYTHON_3_NOT_2:+3}
    ARG PYTHON=python${_PY_SUFFIX}
    ARG PIP=pip${_PY_SUFFIX}
    
    # See http://bugs.python.org/issue19846
    ENV LANG C.UTF-8
    
    RUN apt-get update && apt-get install -y 
        ${PYTHON} 
        ${PYTHON}-pip
    
    RUN ${PIP} --no-cache-dir install --upgrade 
        pip 
        setuptools
    
    # Some TF tools expect a "python" binary
    RUN ln -s $(which ${PYTHON}) /usr/local/bin/python
    
    # Options:
    #   tensorflow
    #   tensorflow-gpu
    #   tf-nightly
    #   tf-nightly-gpu
    # Set --build-arg TF_PACKAGE_VERSION=1.11.0rc0 to install a specific version.
    # Installs the latest version by default.
    ARG TF_PACKAGE=tensorflow
    ARG TF_PACKAGE_VERSION=
    RUN ${PIP} install ${TF_PACKAGE}${TF_PACKAGE_VERSION:+==${TF_PACKAGE_VERSION}}
    
    COPY bashrc /etc/bash.bashrc
    RUN chmod a+rwx /etc/bash.bashrc
    
    RUN ${PIP} install jupyter matplotlib
    # Pin ipykernel and nbformat; see https://github.com/ipython/ipykernel/issues/422
    RUN if [[ "${USE_PYTHON_3_NOT_2}" == "1" ]]; then ${PIP} install ipykernel==5.1.1 nbformat==4.4.0; fi
    RUN ${PIP} install jupyter_http_over_ws
    RUN jupyter serverextension enable --py jupyter_http_over_ws
    
    RUN mkdir -p /tf/tensorflow-tutorials && chmod -R a+rwx /tf/
    RUN mkdir /.local && chmod a+rwx /.local
    RUN apt-get install -y --no-install-recommends wget
    WORKDIR /tf/tensorflow-tutorials
    RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/classification.ipynb
    RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/overfit_and_underfit.ipynb
    RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/regression.ipynb
    RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/save_and_load.ipynb
    RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/text_classification.ipynb
    RUN wget https://raw.githubusercontent.com/tensorflow/docs/master/site/en/tutorials/keras/text_classification_with_hub.ipynb
    COPY readme-for-jupyter.md README.md
    RUN apt-get autoremove -y && apt-get remove -y wget
    WORKDIR /tf
    EXPOSE 8888
    
    RUN ${PYTHON} -m ipykernel.kernelspec
    
    CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root"]
    
    
    

    测试使用gpu

    import tensorflow as tf
    import timeit
    
    with tf.device('/cpu:0'):
    	cpu_a = tf.random.normal([10000, 1000])
    	cpu_b = tf.random.normal([1000, 2000])
    	print(cpu_a.device, cpu_b.device)
    
    with tf.device('/gpu:0'):
    	gpu_a = tf.random.normal([10000, 1000])
    	gpu_b = tf.random.normal([1000, 2000])
    	print(gpu_a.device, gpu_b.device)
    
    def cpu_run():
    	with tf.device('/cpu:0'):
    		c = tf.matmul(cpu_a, cpu_b)
    	return c 
    
    def gpu_run():
    	with tf.device('/gpu:0'):
    		c = tf.matmul(gpu_a, gpu_b)
    	return c 
    
    
    # warm up
    cpu_time = timeit.timeit(cpu_run, number=10)
    gpu_time = timeit.timeit(gpu_run, number=10)
    print('warmup:', cpu_time, gpu_time)
    
    
    cpu_time = timeit.timeit(cpu_run, number=10)
    gpu_time = timeit.timeit(gpu_run, number=10)
    print('run time:', cpu_time, gpu_time)
    
    
    ###########################
    import tensorflow as tf
    import os
    
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    a = tf.constant(1.)
    b = tf.constant(2.)
    print(a+b)
    
    print('GPU:', tf.test.is_gpu_available())
    
    
    
    

    tensorflow1.12+ 与tensorflow2.0的区别

    两个版本tensorflow函数对照:
    参考链接:
    https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0

    jupyter 设置密码

    
    # 打开cmd,进入ipython交互环境
    ipython
    
    from notebook.auth import passwd
    passwd()
    # 在这里输入想要设置的登录JupyterLab 的密码 然后会有一串输出,复制下来,等会配置需要使用
    
    
    
    修改 JupyterLab 配置文件:
    jupyter lab --generate-config
    
    修改以下
    c.NotebookApp.allow_root = True
    c.NotebookApp.open_browser = False
    c.NotebookApp.password = '刚才复制的输出粘贴到这里来'
    
    
    # 安装一个生成目录的插件
    jupyter labextension install @jupyterlab/toc
    # 可以查看一下安装的插件
    jupyter labextension list
    
    ##链接
    https://www.cnblogs.com/lskreno/p/10844315.html
    

    官方镜像启动

    nvidia-docker run  -d --rm  -p 3333:8888  tensorflow/tensorflow:latest-gpu-py3-jupyter   /bin/bash -c  "jupyter notebook --notebook-dir=/tf --ip 0.0.0.0 --no-browser --allow-root  --NotebookApp.token='jupyterAdmin' "
    

    ubuntu 编译安装python

    https://yq.aliyun.com/articles/675910

    如何构建包含TensorFlow/Python3/Jupyter的Docker
    https://zhuanlan.zhihu.com/p/66278558 :这个启动需要token

    ubuntu1604-cuda-cudnn-anaconda-jupyter-tensorflow

    FROM  nvidia/cuda:9.0-cudnn7-runtime-ubuntu16.04
    ENV   PATH  /root/anaconda3/bin:$PATH
    RUN   apt update   &&  apt  install  wget  && apt  install  bzip2   &&  cd  /    
          &&  wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh   
    	  &&  chmod  +x  /Anaconda3-5.2.0-Linux-x86_64.sh   
    	  && ./Anaconda3-5.2.0-Linux-x86_64.sh -b           
    	  &&  rm -rf  ./Anaconda3-5.2.0-Linux-x86_64.sh
    RUN   pip  install tensorflow-gpu==1.11.0   -i   https://pypi.tuna.tsinghua.edu.cn/simple  
          &&   pip  install jupyterlab  
    	  &&   pip  install  msgpack
    
    RUN  echo  'import subprocess
    import sys
    subprocess.call("cd /", shell=True)
    subprocess.call("jupyter lab --ip=0.0.0.0 --no-browser --allow-root  --NotebookApp.allow_root=False --NotebookApp.token='jupyterAdmin' --notebook-dir=/home", shell=True)'  >>/python_service.py
    CMD ["python3","/python_service.py"]
    
    
    
    FROM  nvidia/cuda:9.0-cudnn7-runtime-ubuntu16.04
    ENV   PATH  /root/anaconda3/bin:$PATH
    RUN   apt update   &&  apt  install  wget  && apt  install  bzip2   &&  cd  /    
          &&  wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh   
          &&  chmod  +x  /Anaconda3-5.2.0-Linux-x86_64.sh   
          &&  ./Anaconda3-5.2.0-Linux-x86_64.sh -b          
          &&  rm -rf  ./Anaconda3-5.2.0-Linux-x86_64.sh
     RUN  pip install tensorflow-gpu==1.11.0   -i   https://pypi.douban.com/simple/    
          &&   pip  install  msgpack   -i   https://pypi.douban.com/simple/    
          &&   pip install jupyterlab   
    
    RUN  echo  'import subprocess
    import sys
    subprocess.call("cd /", shell=True)
    subprocess.call("jupyter lab --ip=0.0.0.0 --no-browser --allow-root  --NotebookApp.allow_root=False --NotebookApp.token='jupyterAdmin' --notebook-dir=/home", shell=True)'  >>/python_service.py
    CMD ["python3","/python_service.py"]
    
    
    
    
    FROM  nvidia/cuda:9.0-cudnn7-runtime-ubuntu16.04
    ENV   PATH  /root/anaconda3/bin:$PATH
    RUN   apt update   &&  apt  install  wget  && apt  install  bzip2   &&  cd  /    
          &&  wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh   
          &&  chmod  +x  /Anaconda3-5.2.0-Linux-x86_64.sh    
          &&  ./Anaconda3-5.2.0-Linux-x86_64.sh -b          
          &&  rm -rf  ./Anaconda3-5.2.0-Linux-x86_64.sh
    RUN  pip install tensorflow-gpu==1.11.0   -i   https://pypi.douban.com/simple/    
          &&   pip install  msgpack   -i   https://pypi.douban.com/simple/    
          &&   pip install jupyterlab   
    
    RUN  echo  'import subprocess
    import sys
    subprocess.call("cd /", shell=True)
    subprocess.call("jupyter lab --ip=0.0.0.0 --no-browser --allow-root  --NotebookApp.allow_root=False --NotebookApp.token='jupyterAdmin' --notebook-dir=/home", shell=True)'  >>/python_service.py
    CMD ["python3","/python_service.py"]
    
    
    
    
    
  • 相关阅读:
    php 上传大文件主要涉及配置upload_max_filesize和post_max_size两个选项
    Linux 文件系统IO性能优化【转】
    MOOC Linux内核之旅小结【转】
    python实战===教你用微信每天给女朋友说晚安【转】
    wxpy: 用 Python 玩微信【转】
    AMBA总线协议AHB、APB、AXI对比分析【转】
    高手进阶,终极内存技术指南——完整/进阶版 II (转)【转】
    ARMCC和GCC编译ARM代码的软浮点和硬浮点问题 【转】
    程序员必知之浮点数运算原理详解【转】
    Hash算法【转】
  • 原文地址:https://www.cnblogs.com/g2thend/p/12256018.html
Copyright © 2020-2023  润新知