• cpu、gpu 安装框架pytorch,cntk,theano及测试


    一,cpu 下安装

    tensorflow
    conda env list
    source activate tensorflow
    直接安装相应版本

    python
    import tensorflow as tf
    tf.version 1.11.0

    keras 直接安装

    conda env list
    source activate keras
    import keras 2.2.2
    print(keras.version)
    import tensorflow as tf
    tf.version

    pytorch

    import torch
    print(torch.version)
    print(torch.cuda.device_count())
    print(torch.cuda.is_available())

    cntk
    /root/anaconda3/bin/conda env list
    source activate cntk-py35

    python 3.5.6
    export PATH=/root/anaconda3/bin:$PATH
    python -c "import cntk; print(cntk.version)"

    theano

    caffe2
    python 3.6.9
    import caffe2

    安装
    conda create -n caffe2 python=3.6
    conda activate caffe2
    conda install pytorch-nightly-cpu -c pytorch -n caffe2

    python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"
    报错:
    pip install protobuf
    pip install future

    参考官网安装即可

    gpu

    tensorflow-gpu:1.11.0 python 3.5

    export PATH=/root/anaconda3/bin:$PATH
    source activate tensorflow

    keras
    export PATH=/root/anaconda3/bin:$PATH
    conda env list
    source activate keras
    python3.5

    nvidia-docker run -it --rm pytorch-gpu:1.1.0 /bin/bash
    pytorch
    [root@191ddd30d4ae /]# python
    Python 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31)
    [GCC 7.3.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.

    import torch
    print(torch.version)
    1.1.0

    print(torch.cuda.device_count())
    1

    print(torch.cuda.is_available())
    True

    cntk

    source activate cntk-py35 python3.5

    python -c "import cntk; print(cntk.version)"
    2.4

    theano

    gpu-theano-in-use:1.0.4 python2.7

    source activate theano
    python test.py

    import theano
    /root/anaconda3/envs/theano/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7.
    warnings.warn("Your cuDNN version is more recent than "
    Using cuDNN version 7603 on context None
    Mapped name None to device cuda: GeForce GTX 960M (0000:01:00.0)

    theano.version
    u'1.0.4'

    https://www.jianshu.com/p/4cc75a79dce9
    Linux下安装miniconda
    在官网下载miniconda3
    执行:bash Miniconda3-latest-Linux-x86_64.sh  
    -vim ~/.bashrc
    -export PATH=~/anaconda3/bin:$PATH
    -source ~/.bashrc
    创建虚拟环境并安装theano
    基于python2.7创建一个名为theano的环境
    conda create --name theano python=2.7
    进入虚拟环境: source activate theano
    -使用conda安装:conda install numpy scipy mkl
    pip install parameterized
    conda install theano pygpu

           -使用pip安装:pip install Theano
    

    测试参考官网文档

    caffe2
    看官网文档安装
    https://caffe2.ai/docs/getting-started.html?platform=ubuntu&configuration=compile

    https://blog.csdn.net/qq_35451572/article/details/79428167

    cmake
    -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-9.0
    -DCUDNN_ROOT_DIR=/usr/local/cuda

    To check if Caffe2 build was successful

    python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"

    To check if Caffe2 GPU build was successful

    This must print a number > 0 in order to use Detectron

    python -c 'from caffe2.python import workspace; print(workspace.NumCudaDevices())'

    参考
    https://blog.csdn.net/Yan_Joy/article/details/70241319

    https://www.nvidia.com/en-gb/data-center/gpu-accelerated-applications/caffe2/
    https://blog.csdn.net/qq_35451572/article/details/79428167
    https://blog.csdn.net/qq_16525279/article/details/79724728
    https://blog.csdn.net/y_f_raquelle/article/details/83278953
    https://www.cnblogs.com/nanzhao/p/9596844.html

    附:conda常用

    1. conda env list 或 conda info -e 查看当前存在哪些虚拟环境

    2. conda update conda 检查更新当前conda

    3. conda update --all 更新本地已安装的包

    4. conda create -n your_env_name python=X.X(2.7、3.6等) anaconda 命令创建python版本为X.X、名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到。

    5. Windows: activate your_env_name(虚拟环境名称) 激活虚拟环境

    6. conda install -n your_env_name [package] 安装package到your_env_name中

    7. linux: source deactivate Windows: deactivate 关闭虚拟环境

    8. conda remove -n your_env_name(虚拟环境名称) --all 删除虚拟环境

    9. conda remove --name your_env_name package_name 删除环境中的某个

  • 相关阅读:
    Verilog --序列检测器(采用移位寄存器实现)
    SV -- Randomization 随机化
    SV -- Interprocess Communication (IPC 线程间通信)
    SV -- Class 类
    Verilog -- 序列模三(整除3)检测器
    VSCode+C++环境搭建
    在次线性时间内计算线性递归数列
    Codefest19受虐记
    ABC135记录
    Paint.NET软件分享
  • 原文地址:https://www.cnblogs.com/g2thend/p/11516029.html
Copyright © 2020-2023  润新知