题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1452
题目大意:
求2004^x次方的因子和mod29的值
解题思路:
首先2004 = 2 * 2 * 3 * 167
所以2004^x = 2^(2x) * 3 ^(x) * 167 ^ (x)
因子和为:
[ (2^(2x+1) - 1) / (2 - 1) ] * [(3 ^ (x+1) - 1) / (3 - 1)] * [(167 ^ (x+1) - 1) / (167 - 1)]
最终mod29
由于有分数求模,取逆元,还需用快速幂求幂值
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 ll pow(ll a, ll b, ll m) 5 { 6 ll ans = 1; 7 while(b) 8 { 9 if(b & 1)ans = ans * a % m; 10 a *= a; 11 a %= m; 12 b /= 2; 13 } 14 return ans; 15 } 16 ll extgcd(ll a, ll b, ll& x, ll& y) 17 //求解ax+by=gcd(a, b) 18 //返回值为gcd(a, b) 19 { 20 ll d = a; 21 if(b) 22 { 23 d = extgcd(b, a % b, y, x); 24 y -= (a / b) * x; 25 } 26 else x = 1, y = 0; 27 return d; 28 } 29 ll mod_inverse(ll a, ll m) 30 //求解a关于模上m的逆元 31 //返回-1表示逆元不存在 32 { 33 ll x, y; 34 ll d = extgcd(a, m, x, y); 35 return d == 1 ? (m + x % m) % m : -1; 36 } 37 int main() 38 { 39 ll x; 40 while(cin >> x && x) 41 { 42 ll m = 29; 43 ll a = pow(2, 2 * x + 1, m) - 1; 44 ll b = pow(3, x + 1, m) - 1; 45 ll c = pow(167, x + 1, m) - 1; 46 ll ans = a * b * c * mod_inverse(2, m) * mod_inverse(166, m); 47 ans %= m; 48 cout<<ans<<endl; 49 } 50 return 0; 51 }