题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2680
题目大意:
给你一个有向图,一个起点集合,一个终点,求最短路
解题思路:
1.自己多加一个超级源点,把起点集合连接到超级源点上,然后将起点与超级源点的集合的路径长度设为0,这样就称为一个n+1个点的单源最短路算法。。。。。
2.反向图+终点的Dijkstra,然后记录最小值。
注意:重边处理
思路1:
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int maxn = 1000 + 10; 5 const int INF = 0x3f3f3f3f; 6 int Map[maxn][maxn]; 7 int n, m, s; 8 int d[maxn], v[maxn]; 9 void dijkstra() 10 { 11 memset(v, 0, sizeof(v)); 12 for(int i = 0; i <= n; i++)d[i] = INF; 13 d[0] = 0;//源点是0 14 for(int i = 0; i <= n; i++)//n+1个点,循环n+1次 15 { 16 int x = 0, m = INF; 17 for(int j = 1; j <= n; j++)if(!v[j] && d[j] < m)m = d[x = j]; 18 v[x] = 1; 19 for(int j = 1; j <= n; j++) 20 { 21 d[j] = min(d[j], d[x] + Map[x][j]); 22 } 23 } 24 if(d[s] == INF)cout<<"-1"<<endl; 25 else cout<<d[s]<<endl; 26 } 27 int main() 28 { 29 while(cin >> n >> m >> s) 30 { 31 int u, v, w; 32 memset(Map, INF, sizeof(Map)); 33 while(m--) 34 { 35 scanf("%d%d%d", &u, &v, &w); 36 Map[u][v] = min(Map[u][v], w);//注意重边 37 } 38 scanf("%d", &w); 39 while(w--) 40 { 41 scanf("%d", &u); 42 Map[0][u] = 0;//建立超级源点0 43 } 44 dijkstra(); 45 } 46 return 0; 47 }
思路2:
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int maxn = 1000 + 10; 5 const int INF = 0x3f3f3f3f; 6 int Map[maxn][maxn]; 7 int n, m, s; 8 int d[maxn], v[maxn]; 9 void dijkstra() 10 { 11 memset(v, 0, sizeof(v)); 12 for(int i = 0; i <= n; i++)d[i] = INF; 13 d[s] = 0; 14 for(int i = 0; i < n; i++) 15 { 16 int x = 0, m = INF; 17 for(int j = 1; j <= n; j++)if(!v[j] && d[j] < m)m = d[x = j]; 18 v[x] = 1; 19 for(int j = 1; j <= n; j++) 20 { 21 d[j] = min(d[j], d[x] + Map[x][j]); 22 } 23 } 24 } 25 int main() 26 { 27 while(cin >> n >> m >> s) 28 { 29 int u, v, w; 30 memset(Map, INF, sizeof(Map)); 31 while(m--) 32 { 33 scanf("%d%d%d", &u, &v, &w); 34 Map[v][u] = min(Map[v][u], w);//反向建图 35 } 36 dijkstra(); 37 scanf("%d", &w); 38 int ans = INF; 39 while(w--) 40 { 41 scanf("%d", &u); 42 ans = min(ans, d[u]); 43 } 44 if(ans == INF)ans = -1; 45 printf("%d ", ans); 46 } 47 return 0; 48 }