• Apache Kafka源码分析 – Broker Server


    1. Kafka.scala

    在Kafka的main入口中startup KafkaServerStartable, 而KafkaServerStartable这是对KafkaServer的封装

       1: val kafkaServerStartble = new KafkaServerStartable(serverConfig)
       2: kafkaServerStartble.startup
       1: package kafka.server
       2: class KafkaServerStartable(val serverConfig: KafkaConfig) extends Logging {
       3:   private var server : KafkaServer = null
       4:  
       5:   private def init() {
       6:     server = new KafkaServer(serverConfig)
       7:   }
       8:  
       9:   def startup() {
      10:     try {
      11:       server.startup()
      12:     }
      13:     catch {...}
      14:   }
      15: }

    2. KafkaServer

    KafkaServer代表一个kafka broker, 这是kafka的核心.
    只需要看看里面startup了哪些modules, 就知道broker做了哪些工作, 后面一个个具体分析吧

       1: package kafka.server
       2: /**
       3:  * Represents the lifecycle of a single Kafka broker. Handles all functionality required
       4:  * to start up and shutdown a single Kafka node.
       5:  */
       6: class KafkaServer(val config: KafkaConfig, time: Time = SystemTime) extends Logging {
       7:   var socketServer: SocketServer = null
       8:   var requestHandlerPool: KafkaRequestHandlerPool = null
       9:   var logManager: LogManager = null
      10:   var kafkaHealthcheck: KafkaHealthcheck = null
      11:   var topicConfigManager: TopicConfigManager = null
      12:   var replicaManager: ReplicaManager = null
      13:   var apis: KafkaApis = null
      14:   var kafkaController: KafkaController = null
      15:   val kafkaScheduler = new KafkaScheduler(config.backgroundThreads)
      16:   var zkClient: ZkClient = null
      17:  
      18:   /**
      19:    * Start up API for bringing up a single instance of the Kafka server.
      20:    * Instantiates the LogManager, the SocketServer and the request handlers - KafkaRequestHandlers
      21:    */
      22:   def startup() {
      23:     /* start scheduler */
      24:     kafkaScheduler.startup()
      25:     
      26:     /* setup zookeeper */
      27:     zkClient = initZk()
      28:  
      29:     /* start log manager */
      30:     logManager = createLogManager(zkClient)
      31:     logManager.startup()
      32:  
      33:     socketServer = new SocketServer(config.brokerId,
      34:                                     config.hostName,
      35:                                     config.port,
      36:                                     config.numNetworkThreads,
      37:                                     config.queuedMaxRequests,
      38:                                     config.socketSendBufferBytes,
      39:                                     config.socketReceiveBufferBytes,
      40:                                     config.socketRequestMaxBytes)
      41:     socketServer.startup()
      42:  
      43:     replicaManager = new ReplicaManager(config, time, zkClient, kafkaScheduler, logManager, isShuttingDown)
      44:     kafkaController = new KafkaController(config, zkClient)
      45:     
      46:     /* start processing requests */
      47:     apis = new KafkaApis(socketServer.requestChannel, replicaManager, zkClient, config.brokerId, config, kafkaController)
      48:     requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads)
      49:    
      50:     replicaManager.startup()
      51:  
      52:     kafkaController.startup()
      53:     
      54:     topicConfigManager = new TopicConfigManager(zkClient, logManager)
      55:     topicConfigManager.startup()
      56:     
      57:     /* tell everyone we are alive */
      58:     kafkaHealthcheck = new KafkaHealthcheck(config.brokerId, config.advertisedHostName, config.advertisedPort, config.zkSessionTimeoutMs, zkClient)
      59:     kafkaHealthcheck.startup()
      60:   }

    2.1 KafkaScheduler

    KafkaSchduler用于在后台执行一些任务,用ScheduledThreadPoolExecutor实现

       1: package kafka.utils
       2:  
       3: /**
       4:  * A scheduler based on java.util.concurrent.ScheduledThreadPoolExecutor
       5:  * 
       6:  * It has a pool of kafka-scheduler- threads that do the actual work.
       7:  * 
       8:  * @param threads The number of threads in the thread pool
       9:  * @param threadNamePrefix The name to use for scheduler threads. This prefix will have a number appended to it.
      10:  * @param daemon If true the scheduler threads will be "daemon" threads and will not block jvm shutdown.
      11:  */
      12: @threadsafe
      13: class KafkaScheduler(val threads: Int, 
      14:                      val threadNamePrefix: String = "kafka-scheduler-", 
      15:                      daemon: Boolean = true) extends Scheduler with Logging {
      16:   @volatile private var executor: ScheduledThreadPoolExecutor = null   
      17:   override def startup() {
      18:     this synchronized {
      19:       executor = new ScheduledThreadPoolExecutor(threads) //创建ScheduledThreadPoolExecutor
      20:       executor.setContinueExistingPeriodicTasksAfterShutdownPolicy(false)
      21:       executor.setExecuteExistingDelayedTasksAfterShutdownPolicy(false)
      22:       executor.setThreadFactory(new ThreadFactory() {
      23:                                   def newThread(runnable: Runnable): Thread = 
      24:                                     Utils.newThread(threadNamePrefix + schedulerThreadId.getAndIncrement(), runnable, daemon)
      25:                                 })
      26:     }
      27:   }
      28:  
      29: def schedule(name: String, fun: ()=>Unit, delay: Long, period: Long, unit: TimeUnit) = {
      30:   val runnable = new Runnable { //将fun封装成Runnable
      31:     def run() = {
      32:       try {
      33:         fun()
      34:       } catch {...} 
      35:       finally {...}
      36:     }
      37:   }
      38:   if(period >= 0) //在pool中进行delay schedule
      39:     executor.scheduleAtFixedRate(runnable, delay, period, unit)
      40:   else
      41:     executor.schedule(runnable, delay, unit)
      42: }

    2.2 Zookeeper Client

    由于Kafka是基于zookeeper进行配置管理的, 所以需要创建zkclient和zookeeper集群通信

    2.3 logManager

    The entry point to the kafka log management subsystem. The log manager is responsible for log creation, retrieval, and cleaning.
    Apache Kafka源码分析 – Log Management

    2.4 ReplicaManager

    在0.8中新加入的replica相关模块

    Apache Kafka Replication Design – High level
    kafka Detailed Replication Design V3
    Apache Kafka源码分析 – ReplicaManager

    2.5 Kafka Socket Server

    首先broker server是socket server,所有和broker的交互都是通过往socket端口发送request来实现的

    socketServer = new SocketServer(config.brokerId...)

    KafkaApis
    该类封装了所有request的处理逻辑

    KafkaRequestHandler

     

    2.6 offsetManager

    offsetManager = createOffsetManager()
    定期清除过期的offset数据,即compact操作,

    scheduler.schedule(name = "offsets-cache-compactor",
                         fun = compact,
                         period = config.offsetsRetentionCheckIntervalMs,
                         unit = TimeUnit.MILLISECONDS)

    以及consumer相关的一些offset操作,不细究了,因为我们不用highlevel consumer

    2.7 KafkaController

    kafkaController = new KafkaController(config, zkClient, brokerState)

    Apache Kafka源码分析 – Controller

    0.8后,为了处理replica,会用一个broker作为master,即controller,用于协调replica的一致性

    2.8 TopicConfigManager

    topicConfigManager = new TopicConfigManager(zkClient, logManager)

    TopicConfigManager用于处理topic config的change,kafka除了全局的配置,还有一种叫Topic-level configuration

    > bin/kafka-topics.sh --zookeeper localhost:2181 --alter --topic my-topic 
        --config max.message.bytes=128000

    比如你可以这样设置,那么这些topic config如何生效的?

    topic-level config默认是被存储在,

    /brokers/topics/<topic_name>/config
    但是topic很多的情况下,为了避免创建太多的watcher,

    所以单独创建一个目录

    /brokers/config_changes

    来触发配置的变化
    所以上面的命令除了,把配置写入topic/config,还有增加一个通知,告诉watcher哪个topic的config发生了变化

    /brokers/config_changes/config_change_13321

    并且这个通知有个suffix,用于区别是否已处理过

    /**
       * Process the given list of config changes
       */
      private def processConfigChanges(notifications: Seq[String]) {
        if (notifications.size > 0) {
          info("Processing config change notification(s)...")
          val now = time.milliseconds
          val logs = logManager.logsByTopicPartition.toBuffer
          val logsByTopic = logs.groupBy(_._1.topic).mapValues(_.map(_._2))
          for (notification <- notifications) {
            val changeId = changeNumber(notification)
            if (changeId > lastExecutedChange) {  //未处理过
              val changeZnode = ZkUtils.TopicConfigChangesPath + "/" + notification
              val (jsonOpt, stat) = ZkUtils.readDataMaybeNull(zkClient, changeZnode)
              if(jsonOpt.isDefined) {
                val json = jsonOpt.get
                val topic = json.substring(1, json.length - 1) // hacky way to dequote,从通知中获取topic name
                if (logsByTopic.contains(topic)) {
                  /* combine the default properties with the overrides in zk to create the new LogConfig */
                  val props = new Properties(logManager.defaultConfig.toProps)
                  props.putAll(AdminUtils.fetchTopicConfig(zkClient, topic))
                  val logConfig = LogConfig.fromProps(props)
                  for (log <- logsByTopic(topic))
                    log.config = logConfig    //真正的更新log配置
                  info("Processed topic config change %d for topic %s, setting new config to %s.".format(changeId, topic, props))
                  purgeObsoleteNotifications(now, notifications) //删除过期的notification,10分钟
                }
              }
              lastExecutedChange = changeId
            }
          }
        }
      }
    这个failover也没问题,反正配置设置多次也是无害的,每次启动都会把所有没过期的notification处理一遍

    并且broker重启后是会从zk中, loading完整的配置的,所以也ok的,这个主要用于实时更新topic的配置

    2.8 KafkaHealthcheck

    kafkaHealthcheck = new KafkaHealthcheck(config.brokerId, config.advertisedHostName, config.advertisedPort, config.zkSessionTimeoutMs, zkClient)

    这个很简单,就像注释的,告诉所有人我还活着。。。

    实现就是在,

     /brokers/[0...N] --> advertisedHost:advertisedPort

    register一个ephemeral znode,当SessionExpired时,再去register,典型zk应用
    所以只需要watch这个路径就是知道broker是否还活着

    2.9 ContolledShutdown

    对于0.8之前,broker的startup和shutdown都很简单,把上面这些组件初始化,或stop就可以了

    但是0.8后,增加replica,所以broker不能自己直接shutdown,需要先通知controller,controller做完处理后,比如partition leader的迁移,或replica offline,然后才能shutdown

    private def controlledShutdown()
    挺长的,逻辑就是找到controller,发送ControlledShutdownRequest,然后等待返回,如果失败,就是unclean shutdown
  • 相关阅读:
    【操作系统】用Oracle VM VirtualBox 虚拟机安装XP系统时老是蓝屏
    c#操作Xml(六)
    c#操作Xml(五)
    c#操作Xml(三)
    c#操作Xml(四)
    新年快乐
    c#操作Xml(八)
    从IDataReader中读取数据实体
    c#操作Xml(七)
    c#操作Xml(二)
  • 原文地址:https://www.cnblogs.com/fxjwind/p/3549347.html
Copyright © 2020-2023  润新知