• Scalable IO in Java


    Scalable IO in Java

    http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf

    大部分IO都是下面这个步骤,

    Most have same basic structure:
    Read request
    Decode request
    Process service
    Encode reply
    Send reply

    关键是如何处理并发, 最原始就是单纯的用多线程

    image

    class Server implements Runnable {
        public void run() {
            try {
                ServerSocket ss = new ServerSocket(PORT);
                while (!Thread.interrupted())
                new Thread(new Handler(ss.accept())).start(); //创建新线程来handle
                // or, single-threaded, or a thread pool
            } catch (IOException ex) { /* ... */ }
        }
        
        static class Handler implements Runnable {
            final Socket socket;
            Handler(Socket s) { socket = s; }
            public void run() {
                try {
                    byte[] input = new byte[MAX_INPUT];
                    socket.getInputStream().read(input);
                    byte[] output = process(input);
                    socket.getOutputStream().write(output);
                } catch (IOException ex) { /* ... */ }
            }       
            private byte[] process(byte[] cmd) { /* ... */ }
        }
    }

    显然简单的多线程会带来扩展性问题, 当client数量变的很多的时候, 还其他的可用性, 性能的问题
    解决方法就是Divide-and-conquer, 分开后, 就需要Event-driven Designs来串联起来...

     

    单线程版本的Reactor, 所有事情read, process, write都由单个线程完成, 完成一步重新设置下一步的event, 然后干其他的事
    问题当然就是, 其中任何步骤不能消耗太多时间, 因为只有一个线程, 你占住了就会block其他任务
    ps, 不明白为什么要画那么大个acceptor, 只是作为第一步的callback对象...

    image

    看代码会更清楚,

    class Reactor implements Runnable { 
        final Selector selector;
        final ServerSocketChannel serverSocket;
        Reactor(int port) throws IOException { //Reactor初始化
            selector = Selector.open();
            serverSocket = ServerSocketChannel.open();
            serverSocket.socket().bind(new InetSocketAddress(port));
            serverSocket.configureBlocking(false); //非阻塞
            SelectionKey sk = serverSocket.register(selector, SelectionKey.OP_ACCEPT); //分步处理,第一步,接收accept事件
            sk.attach(new Acceptor()); //attach callback object, Acceptor
        }
        
        public void run() { 
            try {
                while (!Thread.interrupted()) {
                    selector.select();
                    Set selected = selector.selectedKeys();
                    Iterator it = selected.iterator();
                    while (it.hasNext())
                        dispatch((SelectionKey)(it.next()); //Reactor负责dispatch收到的事件
                    selected.clear();
                }
            } catch (IOException ex) { /* ... */ }
        }
        
        void dispatch(SelectionKey k) {
        	Runnable r = (Runnable)(k.attachment()); //调用之前注册的callback对象
        	if (r != null)
        	    r.run();
        }
        
        class Acceptor implements Runnable { // inner
            public void run() {
                try {
                    SocketChannel c = serverSocket.accept();
                    if (c != null)
                    new Handler(selector, c);
                }
                catch(IOException ex) { /* ... */ }
            }
        }
    }
    
    final class Handler implements Runnable {
        final SocketChannel socket;
        final SelectionKey sk;
        ByteBuffer input = ByteBuffer.allocate(MAXIN);
        ByteBuffer output = ByteBuffer.allocate(MAXOUT);
        static final int READING = 0, SENDING = 1;
        int state = READING;
        
        Handler(Selector sel, SocketChannel c) throws IOException {
            socket = c; c.configureBlocking(false);
            // Optionally try first read now
            sk = socket.register(sel, 0);
            sk.attach(this); //将Handler作为callback对象
            sk.interestOps(SelectionKey.OP_READ); //第二步,接收Read事件
            sel.wakeup();
        }
        boolean inputIsComplete() { /* ... */ }
        boolean outputIsComplete() { /* ... */ }
        void process() { /* ... */ }
        
        public void run() {
            try {
                if (state == READING) read();
                else if (state == SENDING) send();
            } catch (IOException ex) { /* ... */ }
        }
        
        void read() throws IOException {
            socket.read(input);
            if (inputIsComplete()) {
                process();
                state = SENDING;
                // Normally also do first write now
                sk.interestOps(SelectionKey.OP_WRITE); //第三步,接收write事件
            }
        }
        void send() throws IOException {
            socket.write(output);
            if (outputIsComplete()) sk.cancel(); //write完就结束了, 关闭select key
        }
    }
    
    //上面 的实现用Handler来同时处理Read和Write事件, 所以里面出现状态判断
    //我们可以用State-Object pattern来更优雅的实现
    class Handler { // ...
        public void run() { // initial state is reader
            socket.read(input);
            if (inputIsComplete()) {
                process();
                sk.attach(new Sender());  //状态迁移, Read后变成write, 用Sender作为新的callback对象
                  sk.interest(SelectionKey.OP_WRITE);
                sk.selector().wakeup();
            }
        }
        class Sender implements Runnable {
            public void run(){ // ...
                socket.write(output);
                if (outputIsComplete()) sk.cancel();
            }
        }
    }

     

    单线程模式的局限还是比较明显的
    所以改进是, 将比较耗时的部分, 从reactor线程中分离出去, 让reactor专门负责IO
    而另外创建Thread Pool和queue来缓存和处理任务
    所以其实已经进化成Proactor模式, 异步模式

    image

     

    class Handler implements Runnable {
        // uses util.concurrent thread pool
        static PooledExecutor pool = new PooledExecutor(...);
        static final int PROCESSING = 3;
        // ...
        synchronized void read() { // ...
            socket.read(input);
            if (inputIsComplete()) {
                state = PROCESSING;
                pool.execute(new Processer()); //使用线程pool异步执行
            }
        }
        
        synchronized void processAndHandOff() {
            process();
            state = SENDING; // or rebind attachment
            sk.interest(SelectionKey.OP_WRITE); //process完,开始等待write事件
        }
        
        class Processer implements Runnable {
            public void run() { processAndHandOff(); }
        }
    }

    使用多个reactor进程, 主reactor只负责accept, 然后将接收到的socketchannel交给subReactor去listen和处理
    当然也可以在subReactor下加上线程池进行异步处理
    坦白的说, 没看出用多个reactor有啥大的提升, 降低mainReactor listen的负担?

    image

    Selector[] selectors; //subReactors集合, 一个selector代表一个subReactor
    int next = 0;
    class Acceptor { // ...
        public synchronized void run() { ...
            Socket connection = serverSocket.accept(); //主selector负责accept
            if (connection != null)
                new Handler(selectors[next], connection); //选个subReactor去负责接收到的connection
            if (++next == selectors.length) next = 0;
        }
    }
  • 相关阅读:
    Centos7 下安装python3及卸载
    centos python3 的 卸载 删除
    Centos7安装python3和pip3(一)
    python升级带来的yum异常(解决错误File "/usr/bin/yum", line 30 except KeyboardInterrupt, e:)
    python 错误信息是:sudo :apt-get:command not found
    优化页面访问速度(四) ——前端优化
    优化页面访问速度(三) ——服务端优化
    优化页面访问速度(二) ——数据库优化
    优化页面访问速度(一)——综述
    Redis专题——Redis管理工具
  • 原文地址:https://www.cnblogs.com/fxjwind/p/3363329.html
Copyright © 2020-2023  润新知