• 309. 最佳买卖股票时机含冷冻期


    一种常用的方法是将「买入」和「卖出」分开进行考虑:「买入」为负收益,而「卖出」为正收益。在初入股市时,你只有「买入」的权利,只能获得负收益。而当你「买入」之后,你就有了「卖出」的权利,可以获得正收益。显然,我们需要尽可能地降低负收益而提高正收益,因此我们的目标总是将收益值最大化。因此,我们可以使用动态规划的方法,维护在股市中每一天结束后可以获得的「累计最大收益」,并以此进行状态转移,得到最终的答案。

    我们用 (f[i]) 表示第 (i) 天结束之后的「累计最大收益」。根据题目描述,由于我们最多只能同时买入(持有)一支股票,并且卖出股票后有冷冻期的限制,因此我们会有三种不同的状态:

    我们目前持有一支股票,对应的「累计最大收益」记为 (f[i][0])

    我们目前不持有任何股票,并且处于冷冻期中(即上笔交易完成后的第一天),对应的「累计最大收益」记为 (f[i][1])

    我们目前不持有任何股票,并且不处于冷冻期中(即上笔交易完成后的第二天),对应的「累计最大收益」记为 (f[i][2])

    如何进行状态转移呢?在第 ii 天时,我们可以在不违反规则的前提下进行「买入」或者「卖出」操作,此时第 ii 天的状态会从第 i-1i−1 天的状态转移而来;我们也可以不进行任何操作,此时第 ii 天的状态就等同于第 i-1i−1 天的状态。那么我们分别对这三种状态进行分析:

    对于 (f[i][0]),我们目前持有的这一支股票可以是在第 (i−1) 天就已经持有的,对应的状态为 (f[i-1][0]);或者是第 (i) 天买入的,那么第 (i−1) 天就不能持有股票并且不处于冷冻期中,对应的状态为 (f[i-1][2]) 加上买入股票的负收益 ({it prices}[i])。因此状态转移方程为:

    [f[i][0] = max(f[i-1][0], f[i-1][2] - {it prices}[i]) ]

    对于 (f[i][1]),我们在第 (i) 天结束之后处于冷冻期的原因是在当天卖出了股票,那么说明在第 (i−1) 天时我们必须持有一支股票,对应的状态为 (f[i-1][0]) 加上卖出股票的正收益 ({it prices}[i])。因此状态转移方程为:

    [f[i][1] = f[i-1][0] + {it prices}[i] ]

    对于 (f[i][2]),我们在第 (i) 天结束之后不持有任何股票并且不处于冷冻期,说明当天没有进行任何操作,即第 (i−1) 天时不持有任何股票:如果处于冷冻期,对应的状态为 (f[i-1][1]);如果不处于冷冻期,对应的状态为 (f[i-1][2])。因此状态转移方程为:

    [f[i][2] = max(f[i-1][1], f[i-1][2]) ]

    这样我们就得到了所有的状态转移方程。如果一共有 (n) 天,那么最终的答案即为:

    [max(f[n-1][0], f[n-1][1], f[n-1][2]) ]

    注意到如果在最后一天(第 (n−1) 天)结束之后,手上仍然持有股票,那么显然是没有任何意义的。因此更加精确地,最终的答案实际上是 (f[n-1][1])(f[n-1][2]) 中的较大值,即:

    [max(f[n-1][1], f[n-1][2]) ]

    细节

    我们可以将第 00 天的情况作为动态规划中的边界条件:

    [egin{cases} f[0][0] &= -{it prices}[0] \ f[0][1] &= 0 \ f[0][2] &= 0 end{cases} ]

    在第 (0) 天时,如果持有股票,那么只能是在第 (0) 天买入的,对应负收益 (-{it prices}[0]);如果不持有股票,那么收益为零。注意到第 (0) 天实际上是不存在处于冷冻期的情况的,但我们仍然可以将对应的状态 (f[0][1]) 置为零,实际上只要取小于等于(0)的数即可。

    这样我们就可以从第 (1) 天开始,根据上面的状态转移方程进行进行动态规划,直到计算出第 (n-1) 天的结果。

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            int n=prices.size();
            vector<vector<int>> f(n+1,vector<int>(3));
             f[0][0] = -prices[0], f[0][1] = f[0][2] = 0;
            for (int i = 1; i < n; i ++ )
            {
                f[i][0] = max(f[i - 1][0], f[i - 1][2] - prices[i]);
                f[i][1] = f[i - 1][0] + prices[i];
                f[i][2] = max(f[i - 1][2], f[i - 1][1]);
            }
            return max(f[n-1][1],f[n-1][2]);
        }
    };
    
  • 相关阅读:
    Windows的VNC客户端连接Linux无法复制粘贴
    iText中输出中文
    POI写docx文件table中的单元格水平、垂直对齐
    OpenOffice将MS docx转换成pdf文件偶数页眉不显示问题解决办法
    Servlet下载文件迅雷不支持问题真相之一
    Java处理JSON的工具类(List、Map和JSON之间的转换)——依赖jsonlib支持Map嵌套
    EasyUI的combobox组件Chrome浏览器不兼容问题解决办法
    Tomcat5内存简单优化
    jQuery使用动态渲染表单功能完成ajax文件下载
    POI导出Word插入复选框
  • 原文地址:https://www.cnblogs.com/fxh0707/p/14569331.html
Copyright © 2020-2023  润新知