- 安装kaggle工具获取数据源(linux 环境)
- 采用sklearn的KNeighborsClassifier训练数据
- 通过K折交叉验证来选取K值是正确率更高
1.安装kaggle,获取数据源
pip install kaggle
将数据下载到目录/data/data-test/digit_recognize/下
cd /data/data-test/digit_recognize/
kaggle competitions download -c digit-recognizer
2.安装anaconda3作为python3环境,自带sklearn,pandas,numpy等常用工具包
3.代码实现
import pandas as pd
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
import pickle
# 文件路径
project_path = '/data/data-test/digit_recognize/'
clf_file = project_path + 'knn.pickle'
def get_data_chunk(file_name):
# 文件太大分块读取文件 9000万条
reader = pd.read_csv(file_name, iterator=True)
loop = True
chunk_size = 100000
chunks = []
while loop:
try:
chunk = reader.get_chunk(chunk_size)
chunks.append(chunk)
print(len(chunks))
except StopIteration:
loop = False
print("Iteration is stopped.")
res = pd.concat(chunks, ignore_index=True)
return res
def save_clf(clf_s):
clf_f = open(clf_file, 'wb')
pickle.dump(clf_s, clf_f)
clf_f.close()
def get_clf():
clf_f = open(clf_file, 'rb')
res = pickle.load(clf_f)
return res
# 对测试数据集预测结果
def predict():
knn_clf = get_clf()
test_data = get_data_chunk(project_path + "test.csv")
res_data = knn_clf.predict(test_data)
df = pd.DataFrame()
df["imageId"] = test_data["imageId"]
df["Label"] = res_data
df.to_csv(project_path + 'res.csv', index=False)
def train():
train_data = get_data_chunk(project_path + "train.csv")
print(train_data.info())
print(train_data)
train_lable = train_data['label']
x = train_data.drop(columns=['label'])
max = 0
max_k = 5
# k取值从5,15用K折交叉验证算出正确率分数
for k in range(5, 15):
clf = KNeighborsClassifier(n_neighbors=k)
# cv为2折
scores = cross_val_score(clf, x, train_lable, cv=2, scoring='accuracy')
mean = scores.mean()
print(k, mean)
if mean > max:
max_k = k
print("maxK=", max_k)
# 用max_k作为knn参数训练模型
clf = KNeighborsClassifier(n_neighbors=max_k)
clf.fit(x, train_lable)
# 存储模型到pickle文件
save_clf(clf)
if __name__ == '__main__':
train()
predict()