1.平移变换(Translation)
[left{ egin{array}{l}
{
m{x'}} = x + {t_x}\
y' = y + {t_y}
end{array}
ight.]
写成矩阵为:
[left[ {egin{array}{*{20}{c}}
{{
m{x}}'}\
{y'}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
1&0&{{t_x}}\
0&1&{{t_y}}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
x\
y\
1
end{array}}
ight]]
齐次坐标形式为:
[left[ {egin{array}{*{20}{c}}
{{
m{x}}'}\
egin{array}{l}
y'\
1
end{array}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
1&0&{{t_x}}\
egin{array}{l}
0\
0
end{array}&egin{array}{l}
1\
0
end{array}&egin{array}{l}
{{
m{t}}_y}\
1
end{array}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
x\
y\
1
end{array}}
ight]]变量为2个自由度。
2.旋转变换(Euclidean变换)
用单位向量表示为:
[left{ egin{array}{l}
overrightarrow {
m{x}} {
m{' = }}overrightarrow {
m{x}} cos b + overrightarrow y sin b\
overrightarrow y ' = - overrightarrow x sin b + overrightarrow y cos b
end{array}
ight.]
P在坐标系中关系表示为:
$$left[ {egin{array}{*{20}{c}}
{{
m{OA}}}\
{OB}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
{cos b}&{ - sin b}\
{sin b}&{cos b}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
{{
m{OA'}}}\
{{
m{OB'}}}
end{array}}
ight]$$
将xy坐标系和x’y’坐标系建立起了联系。加入上面的平移变换写成齐次形式为:
[left[ {egin{array}{*{20}{c}}
{{
m{x}}'}\
egin{array}{l}
y'\
1
end{array}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
{cos heta }&{{
m{ - }}sin heta }&{{t_x}}\
egin{array}{l}
sin heta \
0
end{array}&egin{array}{l}
cos heta \
0
end{array}&egin{array}{l}
{{
m{t}}_y}\
1
end{array}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
x\
y\
1
end{array}}
ight]]平移2个自由度加旋转一个自由度总共3个自由度。
3.相似变换(Similarity transform)
[left[ {egin{array}{*{20}{c}}
{{
m{x}}'}\
egin{array}{l}
y'\
1
end{array}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
{alpha cos heta }&{{
m{ - }}alpha sin heta }&{{t_x}}\
egin{array}{l}
alpha sin heta \
0
end{array}&egin{array}{l}
alpha cos heta \
0
end{array}&egin{array}{l}
{{
m{t}}_y}\
1
end{array}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
x\
y\
1
end{array}}
ight]]基于以上的变换又多了一个比例系数为4个自由度。
4.仿射变换(Affine transform)
[left[ {egin{array}{*{20}{c}}
{{
m{x}}'}\
egin{array}{l}
y'\
1
end{array}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
{
m{a}}&b&c\
egin{array}{l}
d\
0
end{array}&egin{array}{l}
e\
0
end{array}&egin{array}{l}
f\
1
end{array}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
x\
y\
1
end{array}}
ight]]
为6个自由度.
5.透视变换
我们人眼通过窗外看外面的景物,景物投射到玻璃上面的现状就是最典型的例子。我们看的角度不同,在玻璃上投射的情况就不同。物体的基本形状已经改变。
[left[ {egin{array}{*{20}{c}}
{{
m{x}}'}\
egin{array}{l}
y'\
w'
end{array}
end{array}}
ight] = left[ {egin{array}{*{20}{c}}
{
m{a}}&b&c\
egin{array}{l}
d\
{
m{g}}
end{array}&egin{array}{l}
e\
h
end{array}&egin{array}{l}
f\
1
end{array}
end{array}}
ight]left[ {egin{array}{*{20}{c}}
x\
y\
1
end{array}}
ight]]为8个自由度。