• USACO Total Flow


    USACO Total Flow

    洛谷传送门

    JDOJ传送门

    Description

    Farmer John always wants his cows to have enough water and thus has
    made a map of the N (1 <= N <= 700) water pipes on the farm that
    connect the well to the barn. He was surprised to find a wild mess
    of different size pipes connected in an apparently haphazard way.
    He wants to calculate the flow through the pipes.

    Two pipes connected in a row allow water flow that is the minimum
    of the values of the two pipe's flow values. The example of a pipe
    with flow capacity 5 connecting to a pipe of flow capacity 3 can
    be reduced logically to a single pipe of flow capacity 3:

      +---5---+---3---+    ->    +---3---+
    

    Similarly, pipes in parallel let through water that is the sum of
    their flow capacities:

        +---5---+
     ---+       +---    ->    +---8---+
        +---3---+
    

    Finally, a pipe that connects to nothing else can be removed; it
    contributes no flow to the final overall capacity:

        +---5---+
     ---+               ->    +---3---+
        +---3---+--
    

    All the pipes in the many mazes of plumbing can be reduced using
    these ideas into a single total flow capacity.

    Given a map of the pipes, determine the flow capacity between the
    well (A) and the barn (Z).

    Consider this example where node names are labeled with letters:

                     +-----------6-----------+
            A+---3---+B                      +Z
                     +---3---+---5---+---4---+
                             C       D
    

    Pipe BC and CD can be combined:

                     +-----------6-----------+
            A+---3---+B                      +Z
                     +-----3-----+-----4-----+
                                 D
    

    Then BD and DZ can be combined:

                     +-----------6-----------+
            A+---3---+B                      +Z
                     +-----------3-----------+
    

    Then two legs of BZ can be combined:

                     B
            A+---3---+---9---+Z
    

    Then AB and BZ can be combined to yield a net capacity of 3:

            A+---3---+Z
    

    Write a program to read in a set of pipes described as two endpoints
    and then calculate the net flow capacity from 'A' to 'Z'. All
    networks in the test data can be reduced using the rules here.

    Pipe i connects two different nodes a_i and b_i (a_i in range
    'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <=
    1,000). Note that lower- and upper-case node names are intended
    to be treated as different.

    Input

    * Line 1: A single integer: N

    * Lines 2..N + 1: Line i+1 describes pipe i with two letters and an
    integer, all space-separated: a_i, b_i, and F_i

    Output

    * Line 1: A single integer that the maximum flow from the well ('A')
    to the barn ('Z')

    Sample Input

    5 A B 3 B C 3 C D 5 D Z 4 B Z 6

    Sample Output

    3


    题解:

    网络最大流裸题,源点为1,汇点为26.

    剩下的就是个DInic的板子。

    代码:

    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<queue>
    #define int long long
    using namespace std;
    const int maxn=210;
    const int maxm=5010;
    const int INF=2147483646;
    int n,m,s,t,ans;
    int tot=1,head[maxn],nxt[maxm<<1],to[maxm<<1],val[maxm<<1];
    int lv[maxn],cur[maxn];
    queue<int> q;
    void add(int x,int y,int z)
    {
        to[++tot]=y;
        nxt[tot]=head[x];
        val[tot]=z;
        head[x]=tot;
    }
    bool bfs()
    {
        memset(lv,0,sizeof(lv));
        lv[s]=1;
        q.push(s);
        while(!q.empty())
        {
            int x=q.front();
            q.pop();
            for(int i=head[x];i;i=nxt[i])
            {
                int y=to[i];
                if(!val[i]||lv[y])
                    continue;
                lv[y]=lv[x]+1;
                q.push(y);
            }
        }
        return lv[t];
    }
    int dfs(int x,int flow)
    {
        if(!flow||x==t)
            return flow;
        int ret=0;
        for(int i=cur[x];i;i=nxt[i])
        {
            cur[x]=i;
            int y=to[i];
            if(val[i]>0 && lv[y]==lv[x]+1)
            {
                int tmp=dfs(y,min(val[i],flow));
                flow-=tmp;
                ret+=tmp;
                val[i]-=tmp;
                val[i^1]+=tmp;
            }
        }
        return ret;
    }
    signed main()
    {
        scanf("%lld",&m);
        s=1,t=26;
        for(int i=1;i<=m;i++)
        {
            char s1[4],s2[4];
            int x,y,z;
            scanf("%s%s%lld",s1,s2,&z);
            x=s1[0]-'A'+1;
            y=s2[0]-'A'+1;
            add(x,y,z);
            add(y,x,0);
        }
        while(bfs())
        {
            memcpy(cur,head,sizeof(head));
            ans+=dfs(s,INF);
        }
        printf("%lld
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    geoserver显示shapefile中汉字呈乱码问题的可选解决方案
    C++回调函数示例
    也谈谈技术面试
    轻快好的c++实践
    向 Hacker 迈进 我的书单
    CMake是个好东西
    工作之中总有几日不在状态_你是怎样度过的?
    我是如何从煤矿工成为程序员的
    java多线程系列_用Thread类创建线程(2)
    java多线程系列_使用Runnable接口创建线程(3)
  • 原文地址:https://www.cnblogs.com/fusiwei/p/14056427.html
Copyright © 2020-2023  润新知