• 洛谷 SP14932 LCA


    洛谷 SP14932 LCA - Lowest Common Ancestor

    洛谷评测传送门

    题目描述

    A tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. - Wikipedia

    The lowest common ancestor (LCA) is a concept in graph theory and computer science. Let T be a rooted tree with N nodes. The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself). - Wikipedia

    Your task in this problem is to find the LCA of any two given nodes v and w in a given tree T.

    img

    For example the LCA of nodes 9 and 12 in this tree is the node number 3.

    Input

    The first line of input will be the number of test cases. Each test case will start with a number N the number of nodes in the tree, 1 <= N <= 1,000. Nodes are numbered from 1 to N. The next N lines each one will start with a number M the number of child nodes of the Nth node, 0 <= M <= 999 followed by M numbers the child nodes of the Nth node. The next line will be a number Q the number of queries you have to answer for the given tree T, 1 <= Q <= 1000. The next Q lines each one will have two number v and w in which you have to find the LCA of v and w in T, 1 <= v, w <= 1,000.

    Input will guarantee that there is only one root and no cycles.

    Output

    For each test case print Q + 1 lines, The first line will have “Case C:” without quotes where C is the case number starting with 1. The next Q lines should be the LCA of the given v and w respectively.

    Example

    Input:
    1
    7
    3 2 3 4
    0
    3 5 6 7
    0
    0
    0
    0
    2
    5 7
    2 7
    
    Output:
    Case 1:
    3
    1
    

    输入格式

    输出格式

    题意翻译

    Description:

    一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树。-Wikipedia

    最近公共祖先(LCA)是……(此处省去对LCA的描述),你的任务是对一棵给定的树TT以及上面的两个节点u,vu,v求出他们的LCALCA

    img

    例如图中99和1212号节点的LCA*L*C*A*为33号节点

    Input:

    输入的第一行为数据组数TT,对于每组数据,第一行为一个整数N(1leq Nleq1000)N(1≤N≤1000),节点编号从11到NN,接下来的NN行里每一行开头有一个数字M(0leq Mleq999)M(0≤M≤999),MM为第ii个节点的子节点数量,接下来有MM个数表示第ii个节点的子节点编号。下面一行会有一个整数Q(1leq Qleq1000)Q(1≤Q≤1000),接下来的QQ行每行有两个数u,vu,v,输出节点u,vu,v在给定树中的LCALCA

    输入数据保证只有一个根节点并且没有环。

    Output:

    对于每一组数据输出Q+1Q+1行,第一行格式为"Case i:"(没有双引号),i表示当前数据是第几组,接下来的QQ行每一行一个整数表示一对节点u,vu,v的LCALCA

    Sample Input:

    1
    7
    3 2 3 4
    0
    3 5 6 7
    0
    0
    0
    0
    2
    5 7
    2 7
    

    Sample Output:

    Case 1:
    3
    1
    

    Translated by @yxl_gl

    输入输出样例

    题解:

    LCA模板题目双倍经验~~

    点进来的小伙伴肯定还不太会LCA...

    请参考蒟蒻的这篇博客:

    (这里介绍了倍增求LCA,其实求LCA还有好多方式,比如离线Tarjan和树链剖分等,有兴趣的巨佬可以自己涉及,如果只求LCA的话,还是这种倍增法更快一些)

    求解LCA问题的几种方式

    当然,本题还有一些小细节,比如多组数据数据要清空,以及比较奇葩的读入边的方式。

    代码:

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=1010;
    char *p1,*p2,buf[100000];
    #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
    int read()
    {
    	int x=0,f=1;
    	char ch=nc();
    	while(ch<48){if(ch=='-')f=-1;ch=nc();}
    	while(ch>47)	x=(((x<<2)+x)<<1)+ch-48,ch=nc();
    	return x*f;
    }
    int n,m,q;
    int tot,head[maxn],nxt[maxn<<1],to[maxn<<1];
    int deep[maxn],fa[maxn][21];
    void add(int x,int y)
    {
    	to[++tot]=y;
    	nxt[tot]=head[x];
    	head[x]=tot;
    }
    void dfs(int x,int f)
    {
    	deep[x]=deep[f]+1;
    	fa[x][0]=f;
    	for(int i=1;(1<<i)<=deep[x];i++)
    		fa[x][i]=fa[fa[x][i-1]][i-1];
    	for(int i=head[x];i;i=nxt[i])
    	{
    		int y=to[i];
    		if(y==f)
    			continue;
    		dfs(y,x);
    	}
    }
    int lca(int x,int y)
    {
    	int ret;
    	if(deep[x]<deep[y])
    		swap(x,y);
    	for(int i=20;i>=0;i--)
    		if(deep[fa[x][i]]>=deep[y])
    			x=fa[x][i];
    	if(x==y)
    		return y;
    	for(int i=20;i>=0;i--)
    	{
    		if(fa[x][i]!=fa[y][i])
    		{
    			x=fa[x][i];
    			y=fa[y][i];
    		}
    		else
    			ret=fa[x][i];
    	}
    	return ret;
    }
    int main()
    {
    	int t;
    	t=read();
    	for(int k=1;k<=t;k++)
    	{
    		tot=0;
    		memset(head,0,sizeof(head));
    		memset(nxt,0,sizeof(nxt));
    		memset(to,0,sizeof(to));
    		memset(deep,0,sizeof(deep));
    		memset(fa,0,sizeof(fa));
    		n=read();
    		for(int i=1;i<=n;i++)
    		{
    			m=read();
    			if(!m)
    				continue;
    			for(int j=1;j<=m;j++)
    			{
    				int u=read();
    				add(u,i);
    				add(i,u);
    			}
    		}
    		dfs(1,0);
    		q=read();
    		printf("Case %d:
    ",k);
    		while(q--)
    		{
    			int u=read();
    			int v=read();
    			printf("%d
    ",lca(u,v));
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    DS博客作业02—线性表
    DS博客作业01--日期抽象数据类型
    c语言第六次作业---结构体&文件
    c语言博客05--指针
    c语言博客作业04--数组
    DS博客作业08-课程总结
    DS博客作业07--查找
    DS博客作业06--图
    DS博客作业-05--树
    DS-博客作业03--栈和队列
  • 原文地址:https://www.cnblogs.com/fusiwei/p/11860931.html
Copyright © 2020-2023  润新知