• 最流行的4个机器学习数据集【转】


    机器学习算法需要作用于数据,而数据的本质则决定了应用的机器学习算法是否合适,而数据的质量也会决定算法表现的好坏程度。所以会研究数据,会分析数据很重要。本文作为学习研究数据系列博文的开篇,列举了4个最流行的机器学习数据集。

    Iris

    Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

    数据集特征:多变量记录数:150领域:生活
    属性特征: 实数 属性数目: 4 捐赠日期 1988-07-01
    相关应用: 分类 缺失值? 网站点击数: 563347

    Adult

    该数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。

    数据集特征:多变量记录数:48842领域:社会
    属性特征: 类别型,整数 属性数目: 14 捐赠日期 1996-05-01
    相关应用: 分类 缺失值? 网站点击数: 393977

    Wine

    这份数据集包含来自3种不同起源的葡萄酒的共178条记录。13个属性是葡萄酒的13种化学成分。通过化学分析可以来推断葡萄酒的起源。值得一提的是所有属性变量都是连续变量。

    数据集特征:多变量记录数:178领域:物理
    属性特征: 整数,实数 属性数目: 13 捐赠日期 1991-07-01
    相关应用: 分类 缺失值? 网站点击数: 337319

    Car Evaluation

    这是一个关于汽车测评的数据集,类别变量为汽车的测评,(unacc,ACC,good,vgood)分别代表(不可接受,可接受,好,非常好),而6个属性变量分别为「买入价」,「维护费」,「车门数」,「可容纳人数」,「后备箱大小」,「安全性」。值得一提的是6个属性变量全部是有序类别变量,比如「可容纳人数」值可为「2,4,more」,「安全性」值可为「low, med, high」。

    数据集特征:多变量记录数:1728领域:N/A
    属性特征: 类别型 属性数目: 6 捐赠日期 1997-06-01
    相关应用: 分类 缺失值? 网站点击数: 272901

    小结

    通过比较以上4个数据集的差异,简单地总结:当需要试验较大量的数据时,我们可以想到「Adult」;当想研究变量之间的相关性时,我们可以选择变量值只为整数或实数的「Iris」和「Wine」;当想研究logistic回归时,我们可以选择类变量值只有两种的「Adult」;当想研究类别变量转换时,我们可以选择属性变量为有序类别的「Car Evaluation」。更多的尝试还需要对这些数据集了解更多才行。

    以上数据集下载地址http://archive.ics.uci.edu/ml/

  • 相关阅读:
    游戏玩家 专有名词 All In One
    Xbox 无线控制器详细使用说明图解教程 All In One
    leetcode online interview All In One
    vcharts custom tooltip All In One
    kaggle All In One
    elpopover ::after style overwrite bug All In One
    webpack 插件 All In One
    js inplace algorithm All In One
    leetcode 面试必刷的算法 100 题 All In One
    vcharts no data All In One
  • 原文地址:https://www.cnblogs.com/fuleying/p/3895817.html
Copyright © 2020-2023  润新知