一、样本方差
设样本均值为$ar x$,样本方差为S2,总体均值为${ m{mu }}$,总体方差为${{ m{sigma }}^2}$,那么样本方差
${S^2} = frac{1}{{n - 1}}mathop sum limits_{i = 1}^n {left( {{x_i} - ar x} ight)^2}$
推导:假设样本数量等于总体数量,应有
${S^2} = frac{1}{n}mathop sum limits_{i = 1}^n {left( {{x_i} - ar x} ight)^2}$
在多次重复抽取样本过程中,样本方差会逐渐接近总体方差,假设每次抽取的样本方差为
(S12,S22,S32…),然后对这些样本方差求平均值记为E(S2),则
${ m{E}}left( {{{ m{S}}^2}} ight) = { m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - ar x} ight)}^2}} ight)$
$ = { m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {left( {{x_i} - mu } ight) - left( {ar x - mu } ight)} ight)}^2}} ight)$
因为
$frac{1}{n}mathop sum limits_{i = 1}^n left( {{x_i} - mu } ight) = frac{1}{n}mathop sum limits_{i = 1}^n {x_i} - mu = ar x - mu $
接上式
${ m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {left( {{x_i} - mu } ight) - left( {ar x - mu } ight)} ight)}^2}} ight) = { m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - mu } ight)}^2} - frac{1}{n}mathop sum limits_{i = 1}^n 2({x_i} - mu )left( {ar x - mu } ight) + frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - mu } ight)}^2}} ight)$
$ = { m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - mu } ight)}^2} - 2left( {ar x - mu } ight)left( {ar x - mu } ight) + {{left( {ar x - mu } ight)}^2}} ight)$
$ = { m{;E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - mu } ight)}^2} - {{left( {ar x - mu } ight)}^2}} ight)$
$ = { m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - mu } ight)}^2}} ight) - E({left( {ar x - mu } ight)^2}) le {sigma ^2}$
所以样本方差除以n会小于总体方差
${ m{E}}left( {frac{1}{n}mathop sum limits_{i = 1}^n {{left( {{x_i} - mu } ight)}^2}} ight) - E({left( {ar x - mu } ight)^2}) = {sigma ^2} - frac{1}{n}{sigma ^2} = frac{{n - 1}}{n}{sigma ^2}$
所以样本方差与总体方差差(n-1)/n倍。
二、协方差
协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。
Cov(x,y) = E[(x-E(x))(y-E(y))]
特殊的当只存在一个变量x,x与自身的协方差等于方差,记作Var(x)
Cov(x,x) =Var(x)= E[(x-E(x))(x-E(x))]
样本协方差
对于多维随机变量Q(x1,x2,x3,…,xn),样本集合为xij=[x1j,x2j,…,xnj](j=1,2,…,m),m为样本数量,在a,b(a,b=1,2…n)两个维度内
${ m{cov}}left( {{{ m{x}}_{ m{a}}},{{ m{x}}_{ m{b}}}} ight) = frac{{mathop sum olimits_{j = 1}^m left( {{x_{aj}} - {{ar x}_a}} ight)left( {{x_{bj}} - {{ar x}_b}} ight)}}{{m - 1}}$
三、协方差矩阵
对于多维随机变量Q(x1,x2,x3,…,xn)我们需要对任意两个变量(xi,xj)求线性关系,即需要对任意两个变量求协方差矩阵
Cov(xi,xj)= E[(xi-E(xi))(xj-E(xj))]
[{
m{cov}}left( {{x_i},{x_j}}
ight) = left[ {egin{array}{*{20}{c}}
{{
m{cov}}left( {{x_1},{x_1}}
ight)}&{{
m{cov}}left( {{x_1},{x_2}}
ight)}&{{
m{cov}}left( {{x_1},{x_3}}
ight)}& cdots &{{
m{cov}}left( {{x_1},{x_{
m{n}}}}
ight)}\
{{
m{cov}}left( {{x_2},{x_1}}
ight)}&{{
m{cov}}left( {{x_2},{x_2}}
ight)}&{{
m{cov}}left( {{x_2},{x_3}}
ight)}& cdots &{{
m{cov}}left( {{x_2},{x_n}}
ight)}\
{{
m{cov}}left( {{x_3},{x_1}}
ight)}&{{
m{cov}}left( {{x_3},{x_2}}
ight)}&{{
m{cov}}left( {{x_3},{x_3}}
ight)}& cdots &{{
m{cov}}left( {{x_3},{x_n}}
ight)}\
vdots & vdots & vdots & ddots & vdots \
{{
m{cov}}left( {{x_m}{x_1}}
ight)}&{{
m{cov}}left( {{x_m},{x_2}}
ight)}&{{
m{cov}}left( {{x_m},{x_3}}
ight)}& cdots &{{
m{cov}}left( {{x_m},{x_n}}
ight)}
end{array}}
ight]]
【 结束 】