1、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。
两阶段数据清洗:
(1)第一阶段:把需要的信息从原始日志中提取出来
ip: 199.30.25.88
time: 10/Nov/2016:00:01:03 +0800
traffic: 62
文章: article/11325
视频: video/3235
(2)第二阶段:根据提取出来的信息做精细化操作
ip--->城市 city(IP)
date--> time:2016-11-10 00:01:03
day: 10
traffic:62
type:article/video
id:11325
(3)hive数据库表结构:
create table data( ip string, time string , day string, traffic bigint,
type string, id string )
今天着重进行第一阶段的文件数据处理
package com.test.dao;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class test1{
public static List<String> ips=new ArrayList<String>();
public static List<String> times=new ArrayList<String>();
public static List<String> traffic=new ArrayList<String>();
public static List<String> wen=new ArrayList<String>();
public static List<String> shi=new ArrayList<String>();
public static class Map extends Mapper<Object , Text , Text,Text>{
private static Text Name =new Text();
private static Text num=new Text();
public void map(Object key,Text value,Context context) throws IOException, InterruptedException{
String line=value.toString();
String arr[]=line.split(",");
Name.set(arr[0]);
num.set(arr[0]);
context.write(Name,num);
}
}
public static class Reduce extends Reducer< Text, Text,Text, Text>{
private static Text result= new Text();
int i=0;
public void reduce(Text key,Iterable<Text> values,Context context) throws IOException, InterruptedException{
for(Text val:values){
context.write(key, val);
ips.add(val.toString());
}
}
}
public static int run()throws IOException, ClassNotFoundException, InterruptedException
{
Configuration conf=new Configuration();
conf.set("fs.defaultFS", "hdfs://localhost:9000");
FileSystem fs =FileSystem.get(conf);
Job job =new Job(conf,"OneSort");
job.setJarByClass(test1.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
Path in=new Path("hdfs://localhost:9000/test2/in/result.txt");
Path out=new Path("hdfs://localhost:9000/test2/out/ip/1");
FileInputFormat.addInputPath(job,in);
fs.delete(out,true);
FileOutputFormat.setOutputPath(job,out);
return(job.waitForCompletion(true) ? 0 : 1);
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{
run();
}
}
}
实验结果截图:
2、数据处理:
·统计最受欢迎的视频/文章的Top10访问次数 (video/article)
·按照地市统计最受欢迎的Top10课程 (ip)
·按照流量统计最受欢迎的Top10课程 (traffic)