import pandas as pd
# TODO: Set weight1, weight2, and bias
weight1 = 1
weight2 =1
bias = -2
# DON'T CHANGE ANYTHING BELOW
# Inputs and outputs
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
correct_outputs = [False, False, False, True]
outputs = []
# Generate and check output
for test_input, correct_output in zip(test_inputs, correct_outputs):
linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias
output = int(linear_combination >= 0)
is_correct_string = 'Yes' if output == correct_output else 'No'
outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string])
# Print output
num_wrong = len([output[4] for output in outputs if output[4] == 'No'])
output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct'])
if not num_wrong:
print('Nice! You got it all correct.
')
else:
print('You got {} wrong. Keep trying!
'.format(num_wrong))
print(output_frame.to_string(index=False))
对于 AND 感知器来说,input1 和 input2 都为 1 时,我们想要的输出等于 1!这个输出是由权重和单位阶跃函数(Heaviside step function)共同决定的: