poj3311
题意
给出一个矩阵,i 行 j 列表示位置 i 到 j 的时间。
求从 0 点出发经过 1 到 n 所有点后并返回 0 点最短耗时。
分析
先用 Floyd 算法,求出两点之间最短路, dp[S][i] 表示访问到 i 这个点时所有点的状态,S 为二进制数,表示这个点是否访问过。
那么转移就是对于 S 中未访问过的点 j, dp[S | (1 << j)][j] = max{ dp[S][i] + dis[i][j] }(i 为所有已经访问过的点) 。
code
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int MAXN = (1 << 12) + 10;
const int INF = 1e9;
int dp[MAXN][12];
int dis[12][12];
int main() {
int n;
while(cin >> n && n) {
n++;
memset(dis, 0x3f, sizeof dis);
memset(dp, 0x3f, sizeof dp);
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
int x;
cin >> x;
dis[i][j] = x;
}
}
for(int k = 0; k < n; k++) {
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
for(int i = 0; i < (1 << n); i++) {
for(int j = 0; j < n; j++) {
if(!((i >> j) & 1)) {
int s = (1 << j);
dp[s][j] = dis[0][j];
for(int k = 0; k < n; k++) {
if((i >> k) & 1) {
dp[i | s][j] = min(dp[i | s][j], dp[i][k] + dis[k][j]);
}
}
}
}
}
int ans = INF;
for(int j = 1; j < n; j++) {
ans = min(ans, dp[(1 << n) - 2][j] + dis[j][0]);
}
cout << ans << endl;
}
return 0;
}