hdu3715
题意
给出一个递归的伪代码,当 x[a[dep]] + x[b[dep]] != c[dep],就向下递归,给出a,b,c数组的值 问 dep 最大多少。其中 0 <= c[i] <= 2 ,0 <= x[i] <= 1。
分析
x 取值存在对立关系( 1或0 ),那么可以通过不等式进行建边,有三种情况,
- 当 c[i] = 2 时,有 A and B = 0,即不能全部为真
- 当 c[i] = 1 时,有 A xor B = 0,加起来不能等于1
- 当 c[i] = 0 时,有 A or B != 0
二分m,判断可行性
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;
const int MAXN = 5e2 + 10;
const int MAXM = 1e4 + 10;
int n, m;
int vis[MAXN];
int flag[MAXN]; // 所属强连通分量的拓扑序
vector<int> G[MAXN], rG[MAXN]; // 注意初始化
vector<int> vs; // 后序遍历顺序的顶点列表
void addedge(int x, int y)
{
G[x].push_back(y); // 正向图
rG[y].push_back(x); // 反向图
}
void dfs(int u)
{
vis[u] = 1;
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(!vis[v]) dfs(v);
}
vs.push_back(u);
}
void rdfs(int u, int k)
{
vis[u] = 1;
flag[u] = k;
for(int i = 0; i < rG[u].size(); i++)
{
int v = rG[u][i];
if(!vis[v]) rdfs(v, k);
}
}
int scc() // 强连通分量的个数
{
vs.clear();
memset(vis, 0, sizeof vis);
for(int i = 0; i < n; i++)
if(!vis[i]) dfs(i);
memset(vis, 0, sizeof vis);
int k = 0;
for(int i = vs.size() - 1; i >= 0; i--)
if(!vis[vs[i]]) rdfs(vs[i], k++);
return k;
}
bool judge()
{
int N = n;
n = 2 * n;
scc();
n /= 2;
for(int i = 0; i < N; i++)
if(flag[i] == flag[N + i])
return false;
return true;
}
int a[MAXM], b[MAXM], c[MAXM];
void init(int can)
{
for(int i = 0; i < 2 * n; i++) G[i].clear(), rG[i].clear();
for(int i = 0; i <= can; i++) // 注意这里是等号
{
if(c[i] == 2) // A and B = 0
{
addedge(a[i], b[i] + n);
addedge(b[i], a[i] + n);
}
else if(c[i] == 1) // A xor B = 0
{
addedge(a[i], b[i]);
addedge(a[i] + n, b[i] + n);
addedge(b[i], a[i]);
addedge(b[i] + n, a[i] + n);
}
else // A or B != 0
{
addedge(a[i] + n, b[i]);
addedge(b[i] + n, a[i]);
}
}
}
void solve()
{
int l = 0, r = m, mid;
while(l + 1 < r)
{
mid = (l + r) / 2;
init(mid);
if(judge()) l = mid;
else r = mid;
}
printf("%d
", l + 1); // 注意上面是等号,实际数量要加1
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++) scanf("%d%d%d", &a[i], &b[i], &c[i]);
solve();
}
return 0;
}