• C/C++判定是否为平方数以及由此引出的IEEE754(3)


    本篇讨论判定一个long long类型的整数是否为完全平方数。

    long long类型的判定比较困难,因为

    (1)long long转换为double会损失精度,其实这个似乎不是大问题,因为转换成long double似乎就不会损失精度了(C语言没有明确规定long double的格式,在大多数实现中是IEEE754 extended format,80 bits,有64位有效数字)

    (2)对于较大的k,long double能否区分k^2和k^2+1的平方根,这决定着我们能否通过“判定一个数的平方根是否为整数”来判定这个数是不是完全平方数。

    long long i = 3037000499ll;//sqrt(2^63 - 1) = i + 0.9XX
        if(sqrt((long double)i * (long double)i + (long double)1.0) == (long double)i)
            printf("error\n");

    上面的代码测试了使得i^2在long long 范围内的最大的i,结果会打印“error”,说明对于long long 范围内比较大的i,long double版的sqrt也不能区分i^2和i^2+1

    因此像上一篇中judge()和judge3()都不能用,下面看看修改过的judge2()

    bool judge2(long long m)//pass test
    {
        long long t = sqrt((long double)m); 
        if(t * t == m){
            return true;
        }
        return false;
    }

    对于一个long long类型的m,首先转换为long double,这一步不会损失精度,然后sqrt返回一个long double

    (1)如果m是完全平方数,则该返回值是精确的,将这个long double赋给long long,同样不会损失精度,因此下面的t * t == m一定成立,返回true

    (2)如果m不是完全平方数,不管t是什么,t * t == m一定不成立,返回false

    因此这个函数是正确的

    测试起来也比较容易,因为只需要测试所有的平方数,看看是否都返回true(其实这里是测(1)的正确性,因为对于(1)不太确信。对于非平方数,就不必测了,因为我们非常确信(2)是成立的)

        for (long long i = 1; i <= 3037000499ll; i++) {
            if (!judge2(i * i)) {
                printf("error:%ld\n", i);
                break;
            }
        }

    结果是不会打印error

    因此测试也表明这个判定函数是正确的

  • 相关阅读:
    [zt]在XML序列化时去除默认命名空间xmlns:xsd和xmlns:xsi
    线程间操作无效: 从不是创建控件“...”的线程访问它。
    Unity IoC + WCF + wsHTTPBinding + Certificate Authorization
    [转]PowerDesigner使用教程 —— 概念数据模型
    C# Post数据和接收简单示例【摘】
    163相册验证码图片的识别手记之一 去除干扰
    实现WCF和Unity 的集成
    Html.ActionLink 几种重载方式说明及例子
    如何从程序员到项目经理【转帖51cto】
    OSG闪存
  • 原文地址:https://www.cnblogs.com/fstang/p/2889302.html
Copyright © 2020-2023  润新知